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The exploration of one-factorizations of complete graphs is the foundation of some classical 
sports scheduling problems. One has to traverse the landscape of such one-factorizations 
by moving from one of those to a so-called neighbor one-factorization. This approach 
amounts to modifying locally the coloring associated with a one-factorization. We consider 
some particular types of modifications and describe various constructions which give 
one-factorizations which may be modified or not by these techniques. Among those are 
recoloring of bichromatic cycles, altering of optimally colored subcliques of even size, or 
recoloring of chordless lanterns.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A classical model used to solve some sports tournament scheduling problems is the one-factorization of a complete 
graph K2n on 2n nodes. In that model nodes of the graph represent teams, edges represent games to be scheduled, and 
factors (or colors) represent rounds [10]. A schedule for the tournament is then represented by a one-factorization of K2n . A 
popular computational approach consists of using local search methods that move from a schedule to a so-called neighbor 
schedule until getting a locally optimal solution regarding some objective function.

The efficiency of local search relies heavily on the choice of a suitable neighborhood in the set of one-factorizations of 
K2n . A neighbor solution is found by recoloring an appropriate partial subgraph of K2n . We shall consider in this work some 
possible choices of the subgraph to be recolored which lead to simple and hence practical recoloring techniques. Such an 
approach may be viewed as the reconfiguration of a one-factorization. We intend to examine the existence of adequate 
subgraphs to be recolored. This will lead us to exhibit some properties of one-factorizations that have some interest in their 
own.

This work deals with the existence of certain colored subgraphs in one-factorizations. We show results both on general 
one-factorizations and on particular types of one-factorizations.

The rest of the work is organized as follows: In Section 2 we define the colored subgraphs we deal with in this work: 
colorful chordless lanterns and optimally colored cliques of even size. We also describe some particular types of one-
factorizations of interest. In Section 3 we investigate the existence of colorful chordless lanterns in one-factorizations of 
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Fig. 1. Two colorful chordless lanterns L(u, v, W1) and L(u, v, W2) by taking W1 = {w1, w2, w4, w5, w7, w8} and W2 = {w3, w6}. It is easy to check that 
C(B(u, W1)) = C(B(v, W1)) and C(B(u, W2)) = C(B(v, W2)).

different sizes and in Section 4 our focus is on the existence of optimally colored cliques of even size. In Section 5 we give 
results for one-factorizations of graphs with a small number of nodes. The last section consists of concluding remarks.

2. Definitions and basic concepts

In a graph G = (V , E) on node set V and edge set E we consider a node v and a set W ⊂ N(v) where N(v) is the set of 
all neighbors of v . Then B(v, W ) called the bundle of v constructed on W is the set of edges v w with w ∈ W . If W = N(v)

we simply write B(v). We will consider complete graphs unless mentioned otherwise. That is N(v) = V \ {v} for all v ∈ V . 
For graph theoretical terms and notations not defined in here, the reader is referred to [2].

A one-factorization of K2n is a partition of E(K2n) into 2n − 1 one-factors F1, . . . , F2n−1. Each one-factor is a perfect 
matching on K2n . We also call a one-factorization a (proper edge, optimal) coloring and each one-factor is indeed a color 
class. Since this work does not deal with any other type of factorizations, in the remainder of this manuscript we use the 
term factorization as an equivalent of the term one-factorization.

It is well-known that a schedule for a single round-robin tournament with 2n teams has a one to one correspondence 
with a (proper edge) coloring of K2n [10]. Neighborhoods used in local search procedures for round-robin tournament 
scheduling problems can then be associated with partial recolorings of a given coloring. It is interesting then to find, in a 
given colored graph, subgraphs that can be recolored while maintaining the coloring of the rest of the graph unaltered.

One such type of subgraph is the class of bichromatic cycles. Given a bichromatic cycle, one can exchange the colors 
of the edges of the cycle, thus obtaining a new proper coloring. If the bichromatic cycle is hamiltonian then the coloring 
obtained after the recoloring is isomorphic to the original one since the recoloring amounts to just exchanging two one-
factors. Whenever the cycle under consideration is not hamiltonian the coloring obtained is different and possibly not 
isomorphic to the original one.

A factorization F1, . . . , F2n−1 is perfect if Fi ∪ F j is a hamiltonian cycle in K2n for any i, j (i �= j) [8,13]. Notice that in 
a perfect factorization the recoloring of bichromatic cycles does not allow us to obtain factorizations non-isomorphic to 
the original one. The size of bichromatic cycles and the perfectness of factorizations have been thoroughly studied. In the 
context of this work, perfect factorizations are also-called C-blocking (for Cycle blocking) factorizations.

We will study two other types of colored subgraphs that allow local recolorings of factorizations. Those subgraphs are 
called colorful chordless lanterns and optimally colored even cliques.

Let v1, v2 be two nodes of K2n and W ⊂ N(v1) ∩ N(v2) \ {v1, v2}. We will consider the subgraph formed by B(v1, W ) ∪
B(v2, W ). Let C(X) be the set of colors occurring on the edges of X ⊂ E in a coloring of K2n . Then, given a coloring 
of a graph K2n with color set C , if C(B(v1, W )) = C(B(v2, W )), W �= ∅ and inclusionwise minimal for the equality to 
hold, we say that the subgraph on v1, v2, W with edge set B(v1, W ) ∪ B(v2, W ) is a (Chinese) colorful chordless lantern
L(v1, v2, W ).1 An illustration is shown in Fig. 1. Here we have two colorful chordless lanterns L(u, v, W1) and L(u, v, W2)

by taking W1 = {w1, w5, w7, w8, w4, w2} and W2 = {w3, w6}. A chordless colorful lantern L(v1, v2, W ) is trivial if W =
N(v1) \ {v2} = N(v2) \ {v1}. In K2n , this means that when there is a trivial colorful chordless lantern, the smallest set W
that can be used to construct a colorful chordless lantern has size 2n − 2.

1 In [12] a lantern was defined as a graph K2,n−2 with bipartition ({v1, v2}, V \ {v1, v2}) plus the edge [v1, v2]. Here, chordless colorful graphs do not 
have the edge [v1, v2], have a color assigned to each of its edges and obey restrictions on those colors.
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12A3948576B 21B3A495867 3124A59687B
4132B5A6978 514236A798B 615243B7A89
71625348A9B 81726354B9A 918273645AB

A192837465B B1A29384756

Fig. 2. An L-blocking one-factorization of K12. Each block of duodecimal digits is a one-factor, with 0 omitted, so that, for example, 12A3948576B denotes 
the one-factor with edges [01], [2A], [39], [48], [57] and [6B].
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Fig. 3. Canonical factorization of K6.

Note that it is essential to require that W is inclusion-wise minimal, since otherwise by taking W = N(v1) \ {v2} =
N(v2) \ {v1} = V \ {v1, v2} we would always get a trivial colorful chordless lantern.

Furthermore we shall say that a factorization is L-blocking (for Lantern blocking) if for any two nodes v1, v2 of K2n the 
colorful chordless lantern L(v1, v2, W ) is trivial (see Fig. 2). Notice that in an L-blocking factorization, recoloring a colorful 
chordless lantern L(v1, v2, W ) does not allow us to obtain a factorization not isomorphic to the original one since the 
recoloring amounts to exchange the labels of v1 and v2.

A factorization is L-flexible, if for any two nodes v1, v2 of K2n there is a nontrivial colorful chordless lantern L(v1, v2, W ), 
i.e. if |W | < 2n − 2 for any minimal W .

The recoloring operations concerning bi-chromatic cycles and colorful chordless lanterns have been previously studied in 
[11] under different names.

Let Y ⊂ V be a set with even cardinality smaller than 2n. We say that the subgraph induced by Y (K (Y )) is an optimally 
colored even clique if K (Y ) is colored with |Y | − 1 colors. We say that a factorization is K-blocking (for “Klique” blocking) 
when such a set does not exist, i.e., the only optimally colored even clique in the graph is the graph itself. Note that 
in terms of one-factorizations an optimally colored even clique induce a sub one-factorization. With that name optimally 
colored even clique were previously studied in the literature (see [16]).

We define now some types of factorizations. Most of the results of this work will hold for specific types of factorizations.
We remind that a factorization F1, . . . , F2n−1 of K2n is called canonical whenever Fi = {[2n, i] ∪{[i +k, i −k]|k = 1, . . . , n −

1} for i = 1, . . . , 2n −1 where all integers i +k, i −k are taken modulo 2n −1 between 1 and 2n −1. Fig. 3 shows a canonical 
factorization for K6.2

Assume that the number 2n of nodes is divisible by 4 and let us split the set of nodes into two sets V 1 = {v1
1, . . . , v

1
n} and 

V 2 = {v2
1, . . . , v

2
n}. We call a factorization of K2n binary if it contains a factorization of Kn(V 1) and a factorization of Kn(V 2)

using colors 1, . . . , n − 1. Consequently, colors n, . . . , 2n − 1 form a factorization of Kn,n(V 1, V 2). Also, if the factorizations 
of Kn(V 1) and Kn(V 2) are canonical, we call the factorization bicanonical.3

A binary factorization is bisymmetric if it satisfies the following:

2 The name canonical is widely used in sport scheduling literature (see [5,15]). In literature related to one-factorizations of graphs the same factorization 
is often called a G K2n (see [16]).

3 A particular bicanonical factorization using a standard factorization of Kn,n(V 1, V 2) is called G A2n in the lirerature (see [16]).
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Fig. 4. A bisymmetric one-factorization of K8.

1. the factorization of Kn(V 1) and that of Kn(V 2) are the same, i.e., [v1
i , v

1
j ] and [v2

i , v
2
j ] have the same color for any 

1 ≤ i < j ≤ n;
2. if [v1

i , v
1
j ] has color c, then both [v1

i v2
j ] and [v2

i , v
1
j ] have color c + n − 1 for any 1 ≤ i < j ≤ n.

3. [v1
i , v

2
i ] has color 2n − 1 for 1 ≤ i ≤ n

A bisymmetric factorization of K8 is given in Fig. 4.
The above definitions assume that 2n is a multiple of 4. When 2n = 4s + 2, V 1 and V 2 have 2s + 1 nodes. One cannot 

construct a binary factorization as above.
We can however construct a (2s + 1)-coloring of K (V 1) and K (V 2) with colors 1, 2, . . . 2s + 1. At every node vi

j of 
K (V i) some color among 1, 2, . . . 2s + 1 is missing on the edges of B(vi

j). Since we may take the same coloring for K (V 1)

and K (V 2), we may assume that j is the color missing both at v1
j and v2

j . So, we color edges [v1
j , v

2
j ] with color j for 

j = 1, 2, . . . 2s + 1.
So far we have obtained a factorization F1, F2, . . . , F2s+1 of K (V 1) + K (V 2) + M where M is the matching {[v1

i , v
2
i ] i =

1, 2, . . . 2s + 1}. The edges of K (V 1, V 2) − M (regular bipartite subgraph) can then be colored with 2s colors, which gives 
F2s+2, . . . , F4s+1 (take for instance F2s+p+1 = {[v1

i , v
2
i+p] i = 1, 2, . . . 2s + 1} for p = 1, . . . 2s and i + p taken modulo 2s

between 1 and 2s).
Such a factorization of K4s+2 will be called almost binary.
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Observation. [6] We recall that there is a simple property which may be used to show that a factorization is not canonical: 
In a canonical factorization F1, . . . F2n−1 of K2n , for any choice of Fi, F j, Fk(1 ≤ i < j < k ≤ 2n − 1), G(Fi ∪ F j ∪ Fk) contains 
a triangle. This shows, in particular, that binary and almost binary factorizations of K2n with n ≥ 4 are not canonical.

3. L-blockingness

In this section, we investigate the existence of colorful chordless lanterns of different sizes on different classes of factor-
izations.

Lemma 1 is Theorem 1.4 in [12].

Lemma 1. Let G be a graph K2,n−2 with bipartition ({v1, v2}, V \{v1, v2}) plus the edge [v1, v2] where n ≥ 4. Then any edge coloring 
of G using 2n − 1 colors can be extended to a proper edge coloring of K2n using the same set of colors.

The first proposition shows that colorful chordless lanterns of any size (with 2 ≤ |W | ≤ 2n −2) may exist in factorizations 
of K2n for any n ≥ 2.

Proposition 1. Any colorful chordless lantern can be extended to a proper coloring of K2n.

Proof. This is a direct consequence of Lemma 1. We may construct a colorful chordless lantern of any size and then extend 
the coloring to a graph G as defined in the lemma. The application of the lemma now shows that there is a factorization of 
K2n containing the constructed colorful chordless lantern. �

In Theorem 2 of [11] the L-blockingness property of factorizations is characterized by the hamiltonian property of the 
rows (or columns) of the folds of the latin square associated with the factorization.

The next proposition characterizes the values of 2n for which the canonical factorization of K2n is L-blocking. It uses the 
concept of faro shuffle permutation. A faro shuffle, also known as riffle shuffle [1], is a permutation π of 2n elements from 
0 to 2n − 1, such that the sequence (π(0), . . . , π(2n − 1)) is composed by precisely two interleaved increasing sequences. 
For instance, the faro shuffle permutation of the ordered set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) can be expressed as:

π(i) 0 5 1 6 2 7 3 8 4 9

i 0 1 2 3 4 5 6 7 8 9

To apply a faro shuffle permutation in the ordered set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), first split the set in two halves (0, 1, 2, 3, 4)

and (5, 6, 7, 8, 9). Then, interleave elements one-by-one from each half to get a new ordering (0, 5, 1, 6, 2, 7, 3, 8, 4, 9). 
Notice that the elements of each subset {3, 6} and {1, 2, 4, 5, 7, 8} change places in a cyclic way within its own subset. 
These permutation subsets are called “orbits” [9]. A list of the values of 2n for which the faro shuffle permutes all except 
the first and last elements, i.e., has an orbit of size 2n − 2, can be found in [14].

Proposition 2. The canonical factorization of K2n is L-blocking if and only if 2n − 1 is prime and the faro shuffle permutation with 2n
elements has an orbit of size 2n − 2.

Proof. This is theorem 1 in [9]. �
Proposition 3. In the canonical factorization of K2n (n ≥ 2), the colorful chordless lantern L(1, 2n − 2, W ) is trivial.

Proof. In the canonical coloring of K2n the neighbors of node 2n − 2 in consecutive one-factors F1, . . . F2n−1 are 
3, 5, 7, . . . , 2n − 1, 2, 4, . . . , 2n − 4, 2n, 1. Those of node 1 are 2n, 3, 5, . . . , 2n − 3, 2n − 1, 2, 4, . . . , 2n − 6, 2n − 4, 2n − 2. 
Let W = V \ {1, 2n − 2}.

Then, ignoring edge [1, 2n − 2] which has color 2n − 1, one can construct a colorful chordless lantern L(1, 2n − 2, W ). 
The colors of the edges of each path (2n − 2, w, 1) are cyclically consecutive from 1 to 2n − 2 if we consider each possible 
value of w in the order 3, 5, 7, . . . , 2n − 1, 2, 4, . . . , 2n − 4, 2n, see Fig. 5. In consequence it is not possible to take any proper 
subset of W to obtain a nontrivial colorful chordless lantern. �

The previous proposition shows how to find a trivial colorful chordless lantern in the canonical coloring of K2n .

Corollary 1. The canonical factorization of K2n is not L-flexible for any n ≥ 2.

The next proposition shows that the presence of trivial colorful chordless lanterns is not restricted to canonical colorings.
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Fig. 6. Initial pre-coloring.

Proposition 4. Whenever n is even there is a binary factorization of K2n that is not L-flexible.

Proof. Nodes vi
1, wi

1, . . ., wi
n−1 are the nodes of V i (i = 1, 2). First, we construct a trivial lantern L(v1

1, v2
1, W ) as shown in 

Fig. 6.
For k = 1 to n − 1, we have edges [v1

1, w
1
k ] with color k and [w1

k , v2
1] with color k + n − 1.

For l = n to 2n − 3 we have edges [v1
1, w

2
l−n+2] with color l and [w2

l−n+2, v
2
1] with color l − n + 2 and finally we have 

[v1
1, w

2
1] with color 2n − 2 and [w2

1, v
2
1] with color 1.

So edges [v1
1, w

1
k ] for k = 1, . . . , n − 1 are in K (V 1) and they are the edges adjacent to v1

1 with colors 1, . . . , n − 1 in 
F1, . . . , Fn−1.

Similarly, edges [v2
1, w

2
l−n+2] for l = n, . . . , 2n − 3 are in K (V 2), they are the edges adjacent to v2

1 with colors 2, ..., n − 1
in F1, ..., Fn−1.

Furthermore, [v2
1, w

2
1] is the edge of color 1 adjacent to v2

1 in K (V 2).
One verifies that L(v1

1, v
2
1, W ) constructed above is a trivial colorful chordless lantern: starting with [v1

1, w1
1] of color 

1, we go through [w1
1, v

2
1] of color n, then from [v1

1, w
2
2] of color n, we go through [w2

2, v
2
1] of color 2 and we continue. 

The colors of the edges followed are consecutively 1 → n → 2 → n + 1 → . . . → k → k + n − 1 → . . . → 2n − 3 → n − 1 →
2n − 2 → 1.

Now the edges of color n, n + 1, . . . , 2n − 2 in L(v1
1, v

2
1, W ) together with edge [v1

1, v
2
1] that is colored with color 2n − 1, 

give us a set of precolored edges in K (V 1, V 2). See Fig. 7.
We now construct the factorization. Renaming and reordering the nodes w1

i , w
2
i (i = 1, . . . , n − 1) our problem now 

reduces to extending a precoloring of a complete bipartite graph K (V 1, V 2) with V i = {vi
1, . . . , v

i
n}, (i = 1, 2), edges 

[v1
1, v

2
j ][v1

j , v
2
1] precolored with color n − 2 + j ( j = 2, . . . , n). We can take the last one-factor in the coloring as F2n−1 =

[v1, v2] ∪ {[w1, w2] | j = 2, . . . , n}.
1 1 j j
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Consider now an arbitrary one-factorization F = ( F̂1, . . . , F̂n−1) of Kn . We construct Fn−2+ j with precolored edges 
[v1

1, v
2
j ], [v1

j , v
2
1] as follows:

Let F̂k be the one-factor of F containing edge [1, j]; we consider every edge [p, q] of F̂k (�= [1, j]) and introduce [v1
p, v2

q]
and [v1

q, v2
p] into Fn−2+ j .

We repeat this construction for j = 2, . . . , n.
It will give us the one-factors Fn, Fn+1, ..., F2n−2 which together with F1, . . . , Fn−1 and F2n−1, obtained earlier, will give 

us the required factorization of K2n . �
The following proposition shows that bisymmetric factorizations are L-flexible.

Proposition 5. In a bisymmetric factorization of K2n for any two nodes u, v there is a colorful chordless lantern L(u, v, W ) with 
|W | = 2.

Proof. The nodes are divided in two sets V 1 = {v1
1, . . . , v

1
n} and V 2 = {v2

1, . . . , v
2
n}. We have three cases to examine:

1. u, v ∈ V 1 or u, v ∈ V 2: Without loss of generality, let u = v1
1 and v = v1

2. Consider [v1
1, v

2
1]; its color is 2n −1. If [v1

1, v
1
2]

has color c, edge [v2
1, v

1
2] has color c + n − 1; by construction [v1

1, v
2
2] has the same color and [v1

2, v
2
2] has color 2n − 1. 

These edges form a colorful chordless lantern L(v1
1, v1

2, W ) with W = {v2
1, v

2
2} and colors c + n − 1 and 2n − 1.

2. u ∈ V 1, v ∈ V 2: Let, without loss of generality, u = v1
1

(a) assume v = v2
i , i �= 1; then [v1

1, v
1
i ] has some color c, [v1

1, v
2
1] and [v1

i , v
2
i ] have color 2n − 1; [v2

1, v
2
i ] also has color 

c and we have a colorful chordless lantern L(v1
1, v2

i , W ) with W = {v1
i , v

2
1} and colors c and 2n − 1.

(b) let v = v2
1; then consider edge [v1

1, v
1
2]; it has the same color c, as does edge [v2

1, v
2
2]; the edges [v1

1, v
2
2] and 

[v2
1, v

1
2] have color c + n − 1. They form a colorful chordless lantern L(v1

1, v2
1, W ) with W = {v1

2, v
2
2} and colors c

and c + n − 1. �
The following easy proposition shows that binary factorizations are not L-blocking.

Proposition 6. A binary factorization of K2n has a colorful chordless lantern L(u, v, W ) with |W | ≤ n − 2.

Proof. Take any two nodes u, v , both belonging to Kn(V 1). Call W the set of the other nodes in the subgraph. Observe that 
the set of colors of edges [u, w], w ∈ W are the same as the set of colors of edges [w, v], w ∈ W and, in consequence, u, v
and W induce a colorful chordless lantern or there is a W ′ ⊂ W for which u, v and W ′ induce a colorful chordless lantern. 
The set W has size at most n − 2. �

We have shown that canonical factorizations of K2n are L-blocking for certain values of 2n and that binary factorizations 
are not L-blocking. Then, it is natural to ask if there is a non-canonical L-blocking factorization of K2n for any n. In [11] it 
is shown that K12 has 8 L-blocking factorizations (7 of them not canonical).
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Some of the above propositions show that certain factorizations including the canonical and some binary are not L-
flexible. Then, Proposition 5 shows that bisymmetric factorizations are L-flexible. One would like to know if L-flexible 
factorizations exist for values of 2n with n odd. The cases with 2n ≤ 10 are investigated in section 5, but for larger val-
ues of 2n we state the following open problem.

Open problem 1. Is there at least one L-flexible factorization of K4s+2 for each s ≥ 3?

4. Optimally colored even cliques of one-factorizations

In this section, we study optimally colored even cliques inside factorizations. We notice that any factorization of K2n is 
an optimally colored even clique of size 2n. So, here we deal with proper subgraphs of K2n inducing optimally colored even 
cliques.

First we note that optimally colored even cliques of any size r (4 ≤ r ≤ n) exist in some factorizations of K2n .

Observation. For any two even numbers r and n larger than 2, a factorization of Kr can be extended to a factorization of 
K2n if and only if r ≤ n

For a proof, see Theorem 2 in [4] or Theorem 14.2 in [16].
We continue with a complete characterization of the optimally colored cliques within the canonical factorizations of K2n .

Proposition 7. A canonical factorization of K2n contains an optimally colored even clique K2p(p ≤ n) if and only if 2n = (2p −1)s +1.

Proof. Notice that s is necessarily odd. To have a canonical coloring we place nodes 1, 2, . . . , 2n − 1 on a circle with the 
same distance between any consecutive nodes and node 2n is in the center of the circle as in Fig. 3.

a) Assume first that 2n = (2p − 1)s + 1 for some fixed p and s. Consider the set W = {1, s + 1, 2s + 1, . . . , (2p − 2)s + 1}; 
there are exactly s − 1 nodes between any two consecutive nodes of W ((2p − 2)s + 1 and 1 are considered consecutive in 
W ). Let F ′

i be the edges of Fi with both endpoints in W ∪{2n} for i = 1, s +1, 2s +1, . . . , (2p −2)s +1. We have for instance 
F ′

1 = {[2n, 1], [s + 1, (2p − 2)s + 1], [2s + 1, (2p − 3)s + 1], . . . [ps + 1, (p + 1)s + 1]}. Since s − 1 is even all these p edges are 
indeed in F1 and it is a perfect matching in W ∪{2n}. This last property holds for all Fi, i = 1, s +1, 2s +1, . . . , (2p −2)s +1. 
So, F ′

1, F
′
s+1, F

′
2s+1 . . . , F ′

(2p−2)s+1 is a factorization of the complete subgraph of K2n induced by W ∪ {2n} which has 2p
nodes.

b) Conversely, let us assume that there is no s such that 2n = (2p − 1)s + 1. In other words 2n − 1 �= (2p − 1)s for any 
integral (odd) s.

First, we show that such a K2p must necessarily contain node 2n. Consider a canonical coloring of K2n and let 
F 1, . . . , F 2n−1 be the coloring induced on K2n − 2n. Each F i consists of parallel edges in Fig. 3.

Claim 1. There is no optimally colored clique K2p in the canonical factorization of K2n without node 2n for p ≥ 2.

Proof. Let W be a set of 2p nodes of K2p placed in the circle among 1, 2, . . . , 2n − 1. If K (W ) is optimally colored, the 
canonical coloring of K2n induces on K (W ) a coloring F̂a1 , . . . , F̂a2p−1 with colors a1, a2, . . . , a2p−1 ⊆ {1, ..., 2n − 1} and each 
F̂ i consists of parallel edges since F̂ i ⊂ F i . But it is not possible to find such a coloring where each F̂ i consists of parallel 
edges covering exactly the nodes of W : if the nodes of W , in the order they appear in the circle, are b1, b2, . . . , b2p−1, the 
perfect matching F̂ g containing [b1, b3] cannot consist of parallel edges since the edge [b2, bl] ∈ F̂ g will cross with [b1, b3]
for any 4 ≤ l ≤ 2p − 1. Therefore, no such optimally colored K2p can possibly exist. �

So, an optimally colored K2p involves node 2n and 2p − 1 nodes a1, a2, . . . , a2p−1 distributed arbitrarily among positions 
1, 2, . . . , 2n −1 on the circle. Since 2n �= (2p −1)s +1 there will necessarily be three (cyclically) consecutive nodes in the set 
{a1, a2, . . . , a2p−1}, say a2p−1, a1, a2, such that the number d of nodes of the circle between a2p−1 and a1 is different from 
the number c of nodes between a1 and a2. Now, since we have a canonical coloring the matching containing [2n, a1] should 
contain [a2p−1, a2], but this is impossible since d is different from c. So, we cannot find an optimally colored K2p . �

In the previous proposition, if s = 1, then p = n and the result is trivial. So, if we have s ≥ 3, the largest value of p is 
obtained for the smallest odd s such that p = 2n+s−1

2s . We cannot find values of s and p satisfying the equality if 2n − 1 is 
prime. Then, the next corollary characterizes the values of 2n for which the canonical coloring of K2n is K-blocking.

Corollary 2. The canonical coloring of K2n is K-blocking if and only if 2n − 1 is prime.

Next, we study binary factorizations. The next remark notes that they are trivially not K-blocking.
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Table 1
A classification of the six non-isomorphic factorizations of K8.

1 1234567 2134657 3124756 4152637 5142736 6172435 7162534 L-flexible
2 1234567 2134657 3124756 4152637 5142736 6172534 7162435 L-flexible
3 1234567 2134657 3124756 4162537 5172634 6142735 7152436 -
4 1234567 2134657 3124756 4162735 5172634 6142537 7152436 -
5 1234567 2134657 3142756 4162537 5172634 6123547 7152436 K-blocking
6 1234567 2143657 3162547 4172635 5123746 6152734 7132456 C-blocking and K-blocking

Observation. Binary factorizations of K2n have, by definition, two optimally colored cliques of size n.

The next proposition shows that for some values of 2n there are almost binary factorizations of Kn that are not K-
blocking.

Proposition 8. For K4s+2 there is an almost binary factorization which contains two optimally colored cliques of size s + 1 if s is odd.

Proof. We divide the 4s +2 nodes into V i = {vi
1, ..., v

i
s} and W i = {wi

1, ..., w
i
s+1} for i = 1, 2. In this proof, the factorizations 

constructed for K (V i ∪ W i), i = 1, 2, are symmetrical. For i=1,2 we construct in V i ∪ W i a factorization of the complete graph 
K (W i) with colors 1, 2, ..., s and a coloring of K (V i) with colors 1, 2, ..., s. These colorings exist since s + 1 is even (and 
s is odd). Let j be the color among 1, 2, ..., s which is missing on the edges of B(vi

j). Color edge [v1
j , v

2
j ] with color j for 

j = 1, ..., s.
Then for i = 1, 2 we color the edges of the complete bipartite graph K (W i, V i ∪ vi

0) (where vi
0 is an artificial node) with 

colors s +1, ..., 2s +1. Consider the edges B(vi
0) for i = 1, 2: if [vi

o, wi
j] has color c (s +1 ≤ c ≤ 2s +1) then replace [v1

0, w
1
j ]

and [v2
0, w

2
j ] by [w1

j , w
2
j ] and give it color c.

So far we have obtained 2s + 1 one-factors of K (V 1 ∪ W 1) ∪ K (V 2 ∪ W 2) + M where M is a matching of size 2s + 1
between V 1 ∪ W 1 and V 2 ∪ W 2 whose edges have colors 1, 2, ..., 2s + 1.

The edges of K (V 1 ∪ W 1, V 2 ∪ W 2) − M can then be colored with colors 2s + 2, ..., 4s + 1 (since the degree of each 
node is 2s).

In the factorization of K4s+2 constructed, K (W 1) and K (W 2) are optimally colored cliques of size s + 1. �
Before ending this section the next remark shows that K-blockingness is a precondition for both L-blockingness and 

perfectness.

Observation. In a non-K-blocking factorization of K2n there is at least one optimally colored even clique Kr , r ≤ n. Taking 
any 2 nodes of the clique u, v and setting W as the nodes of Kr minus u and v , we obtain a chordless colorful lantern 
L(u, v, W ). If we take the edges of Kr with any of two colors used in Kr , we obtain a cycle or a set of cycles through the 
nodes of Kr . Then, non-K-blocking factorizations of K2n are neither L-blocking nor perfect.

5. Results for one-factorizations of small complete graphs

In this section, we show some blocking results for factorizations of K2n for small values of 2n. For 2n ≤ 10 we were able 
to obtain results by enumeration of all non-isomorphic factorizations or K2n .

For 2n = 4 and 2n = 6 there is only one non-isomorphic factorization of K2n . Both are K-blocking, perfect, and L-blocking.
For 2n = 8 there are 6 non-isomorphic factorizations of K8. Table 1 shows all of the 6 factorizations of K8 and classifies 

them according to the blocking properties studied in this work. Notice that there is no L-blocking factorization of K8 .
After checking each factorization of K10 available on [3] we obtained the following classification: 227 are just K-blocking, 

one (the canonical) is C-blocking and K-blocking, three are L-flexible and the remaining 115 do not fall in any category. There 
is no L-blocking factorization of K10.

In [11] it is shown that K12 has 8 L-blocking factorizations.

Observation. There are at least five non-isomorphic K-blocking and one L-flexible factorizations of K12.

Proof. There are 526,915,620 non-isomorphic one-factorizations of K12 [7]. Among those factorizations, there are five that 
are C-blocking [7] and by Observation 4 they must be K −blocking . Moreover, by Proposition 5 the (unique on isomorphism) 
bisymmetric factorization of K12 is L-flexible. �
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6. Concluding remarks

In this work, we have studied some blocking properties of one-factorizations of complete graphs K2n . For this purpose 
we have introduced two types of colored subgraphs: colorful chordless lanterns L(v1, v2, W ) and optimally colored even 
cliques K2p .

These two classes of subgraphs, together with bichromatic cycles, play an important role in recoloring procedures com-
monly used in algorithmic approaches for sport scheduling problems. With these new concepts in hand, we classified 
one-factorizations in terms of the existence or not of non-trivial subgraphs of each class. In L-blocking factorizations, there 
are no non-trivial colorful chordless lanterns and in K-blocking factorizations there are no non-trivial optimally colored even 
cliques.

Among other results, we characterized the values of 2n for which the canonical factorization of K2n is L-blocking, showed 
that the canonical factorization is never L-flexible, determined that there are non-canonical non-L-flexible factorizations and 
showed how to construct a L-flexible factorization whenever n is even.

Concerning K-blocking, among other results, we characterized the values of 2n for which the canonical factorization of 
K2n is K-blocking and proved that there are almost binary factorizations that are not K-blocking.

Observation 4 showed that K-blockingness is a precondition to both perfection, i.e., C-blockingness, and L-Blockingness. 
Moreover, Corollary 2 shows that the canonical factorization of K2n is K-blocking if and only if 2n − 1 is prime. These two 
facts combined with Proposition 2 show that 2n − 1 has to be prime for the faro shuffle permutation with 2n elements 
to have an orbit of size 2n − 2. Also, knowing that the canonical factorization is perfect whenever 2n − 1 is prime [16], 
we conclude that all L-blocking factorizations found in this work are perfect. This might signal that perfection may be a 
necessary condition for a factorization to be L-blocking. In [11] it is shown that K12 has 8 L-blocking factorizations and only 
5 perfect factorizations disproving the claim.

As future work we intend to study prohibited precolorings for L-blockingness and K-Blockingness.
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