Recoloring subgraphs of $K_{2 n}$ for sports scheduling

Sebastián Urrutia ${ }^{\mathrm{a}, \mathrm{b}, *}$, Dominique de Werra ${ }^{\mathrm{c}}$, Tiago Januario ${ }^{\mathrm{d}}$
${ }^{\text {a }}$ Faculty of Logistics, Molde University College, Molde, Norway
${ }^{\text {b }}$ Computer Science Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
${ }^{\text {c }}$ Institut de Mathématiques, EPFL, Lausanne CH-1015, Switzerland
${ }^{\text {d }}$ Computer Science Department, Universidade Federal da Bahia, Salvador, Brazil

ARTICLE INFO

Article history:

Received 23 October 2020
Received in revised form 27 February 2021
Accepted 24 March 2021
Available online 2 April 2021

Keywords:

Graph theory
One-factorization
Subgraph recoloring

Abstract

The exploration of one-factorizations of complete graphs is the foundation of some classical sports scheduling problems. One has to traverse the landscape of such one-factorizations by moving from one of those to a so-called neighbor one-factorization. This approach amounts to modifying locally the coloring associated with a one-factorization. We consider some particular types of modifications and describe various constructions which give one-factorizations which may be modified or not by these techniques. Among those are recoloring of bichromatic cycles, altering of optimally colored subcliques of even size, or recoloring of chordless lanterns.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A classical model used to solve some sports tournament scheduling problems is the one-factorization of a complete graph $K_{2 n}$ on $2 n$ nodes. In that model nodes of the graph represent teams, edges represent games to be scheduled, and factors (or colors) represent rounds [10]. A schedule for the tournament is then represented by a one-factorization of $K_{2 n}$. A popular computational approach consists of using local search methods that move from a schedule to a so-called neighbor schedule until getting a locally optimal solution regarding some objective function.

The efficiency of local search relies heavily on the choice of a suitable neighborhood in the set of one-factorizations of $K_{2 n}$. A neighbor solution is found by recoloring an appropriate partial subgraph of $K_{2 n}$. We shall consider in this work some possible choices of the subgraph to be recolored which lead to simple and hence practical recoloring techniques. Such an approach may be viewed as the reconfiguration of a one-factorization. We intend to examine the existence of adequate subgraphs to be recolored. This will lead us to exhibit some properties of one-factorizations that have some interest in their own.

This work deals with the existence of certain colored subgraphs in one-factorizations. We show results both on general one-factorizations and on particular types of one-factorizations.

The rest of the work is organized as follows: In Section 2 we define the colored subgraphs we deal with in this work: colorful chordless lanterns and optimally colored cliques of even size. We also describe some particular types of onefactorizations of interest. In Section 3 we investigate the existence of colorful chordless lanterns in one-factorizations of

[^0]https://doi.org/10.1016/j.tcs.2021.03.029
0304-3975/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Fig. 1. Two colorful chordless lanterns $L\left(u, v, W_{1}\right)$ and $L\left(u, v, W_{2}\right)$ by taking $W_{1}=\left\{w_{1}, w_{2}, w_{4}, w_{5}, w_{7}, w_{8}\right\}$ and $W_{2}=\left\{w_{3}\right.$, $\left.w_{6}\right\}$. It is easy to check that $C\left(B\left(u, W_{1}\right)\right)=C\left(B\left(v, W_{1}\right)\right)$ and $C\left(B\left(u, W_{2}\right)\right)=C\left(B\left(v, W_{2}\right)\right)$.
different sizes and in Section 4 our focus is on the existence of optimally colored cliques of even size. In Section 5 we give results for one-factorizations of graphs with a small number of nodes. The last section consists of concluding remarks.

2. Definitions and basic concepts

In a graph $G=(V, E)$ on node set V and edge set E we consider a node v and a set $W \subset N(v)$ where $N(v)$ is the set of all neighbors of v. Then $B(v, W)$ called the bundle of v constructed on W is the set of edges $v w$ with $w \in W$. If $W=N(v)$ we simply write $B(v)$. We will consider complete graphs unless mentioned otherwise. That is $N(v)=V \backslash\{v\}$ for all $v \in V$. For graph theoretical terms and notations not defined in here, the reader is referred to [2].

A one-factorization of $K_{2 n}$ is a partition of $E\left(K_{2 n}\right)$ into $2 n-1$ one-factors $F_{1}, \ldots, F_{2 n-1}$. Each one-factor is a perfect matching on $K_{2 n}$. We also call a one-factorization a (proper edge, optimal) coloring and each one-factor is indeed a color class. Since this work does not deal with any other type of factorizations, in the remainder of this manuscript we use the term factorization as an equivalent of the term one-factorization.

It is well-known that a schedule for a single round-robin tournament with $2 n$ teams has a one to one correspondence with a (proper edge) coloring of $K_{2 n}$ [10]. Neighborhoods used in local search procedures for round-robin tournament scheduling problems can then be associated with partial recolorings of a given coloring. It is interesting then to find, in a given colored graph, subgraphs that can be recolored while maintaining the coloring of the rest of the graph unaltered.

One such type of subgraph is the class of bichromatic cycles. Given a bichromatic cycle, one can exchange the colors of the edges of the cycle, thus obtaining a new proper coloring. If the bichromatic cycle is hamiltonian then the coloring obtained after the recoloring is isomorphic to the original one since the recoloring amounts to just exchanging two onefactors. Whenever the cycle under consideration is not hamiltonian the coloring obtained is different and possibly not isomorphic to the original one.

A factorization $F_{1}, \ldots, F_{2 n-1}$ is perfect if $F_{i} \cup F_{j}$ is a hamiltonian cycle in $K_{2 n}$ for any $i, j(i \neq j)$ [8,13]. Notice that in a perfect factorization the recoloring of bichromatic cycles does not allow us to obtain factorizations non-isomorphic to the original one. The size of bichromatic cycles and the perfectness of factorizations have been thoroughly studied. In the context of this work, perfect factorizations are also-called C-blocking (for Cycle blocking) factorizations.

We will study two other types of colored subgraphs that allow local recolorings of factorizations. Those subgraphs are called colorful chordless lanterns and optimally colored even cliques.

Let v_{1}, v_{2} be two nodes of $K_{2 n}$ and $W \subset N\left(v_{1}\right) \cap N\left(v_{2}\right) \backslash\left\{v_{1}, v_{2}\right\}$. We will consider the subgraph formed by $B\left(v_{1}, W\right) \cup$ $B\left(v_{2}, W\right)$. Let $C(X)$ be the set of colors occurring on the edges of $X \subset E$ in a coloring of $K_{2 n}$. Then, given a coloring of a graph $K_{2 n}$ with color set C, if $C\left(B\left(v_{1}, W\right)\right)=C\left(B\left(v_{2}, W\right)\right), W \neq \emptyset$ and inclusionwise minimal for the equality to hold, we say that the subgraph on v_{1}, v_{2}, W with edge set $B\left(v_{1}, W\right) \cup B\left(v_{2}, W\right)$ is a (Chinese) colorful chordless lantern $L\left(v_{1}, v_{2}, W\right) .{ }^{1}$ An illustration is shown in Fig. 1. Here we have two colorful chordless lanterns $L\left(u, v, W_{1}\right)$ and $L\left(u, v, W_{2}\right)$ by taking $W_{1}=\left\{w_{1}, w_{5}, w_{7}, w_{8}, w_{4}, w_{2}\right\}$ and $W_{2}=\left\{w_{3}, w_{6}\right\}$. A chordless colorful lantern $L\left(v_{1}, v_{2}, W\right)$ is trivial if $W=$ $N\left(v_{1}\right) \backslash\left\{v_{2}\right\}=N\left(v_{2}\right) \backslash\left\{v_{1}\right\}$. In $K_{2 n}$, this means that when there is a trivial colorful chordless lantern, the smallest set W that can be used to construct a colorful chordless lantern has size $2 n-2$.

[^1]| 12A3948576B | 21B3A495867 | 3124A59687B |
| :---: | :---: | :---: |
| 4132B5A6978 | 514236A798B | 615243B7A89 |
| 71625348A9B | 81726354B9A | $918273645 A B$ |
| A192837465B | B1A29384756 | |

Fig. 2. An L-blocking one-factorization of K_{12}. Each block of duodecimal digits is a one-factor, with 0 omitted, so that, for example, 12A3948576B denotes the one-factor with edges [01], [2A], [39], [48], [57] and [6B].

Fig. 3. Canonical factorization of K_{6}.

Note that it is essential to require that W is inclusion-wise minimal, since otherwise by taking $W=N\left(v_{1}\right) \backslash\left\{v_{2}\right\}=$ $N\left(v_{2}\right) \backslash\left\{v_{1}\right\}=V \backslash\left\{v_{1}, v_{2}\right\}$ we would always get a trivial colorful chordless lantern.

Furthermore we shall say that a factorization is L-blocking (for Lantern blocking) if for any two nodes v_{1}, v_{2} of $K_{2 n}$ the colorful chordless lantern $L\left(v_{1}, v_{2}, W\right)$ is trivial (see Fig. 2). Notice that in an L-blocking factorization, recoloring a colorful chordless lantern $L\left(v_{1}, v_{2}, W\right)$ does not allow us to obtain a factorization not isomorphic to the original one since the recoloring amounts to exchange the labels of v_{1} and v_{2}.

A factorization is L-flexible, if for any two nodes v_{1}, v_{2} of $K_{2 n}$ there is a nontrivial colorful chordless lantern $L\left(v_{1}, v_{2}, W\right)$, i.e. if $|W|<2 n-2$ for any minimal W.

The recoloring operations concerning bi-chromatic cycles and colorful chordless lanterns have been previously studied in [11] under different names.

Let $Y \subset V$ be a set with even cardinality smaller than $2 n$. We say that the subgraph induced by $Y(K(Y))$ is an optimally colored even clique if $K(Y)$ is colored with $|Y|-1$ colors. We say that a factorization is K-blocking (for "Klique" blocking) when such a set does not exist, i.e., the only optimally colored even clique in the graph is the graph itself. Note that in terms of one-factorizations an optimally colored even clique induce a sub one-factorization. With that name optimally colored even clique were previously studied in the literature (see [16]).

We define now some types of factorizations. Most of the results of this work will hold for specific types of factorizations.
We remind that a factorization $F_{1}, \ldots, F_{2 n-1}$ of $K_{2 n}$ is called canonical whenever $F_{i}=\{[2 n, i] \cup\{[i+k, i-k] \mid k=1, \ldots, n-$ 1 \} for $i=1, \ldots, 2 n-1$ where all integers $i+k, i-k$ are taken modulo $2 n-1$ between 1 and $2 n-1$. Fig. 3 shows a canonical factorization for $K_{6} .{ }^{2}$

Assume that the number $2 n$ of nodes is divisible by 4 and let us split the set of nodes into two sets $V^{1}=\left\{v_{1}^{1}, \ldots, v_{n}^{1}\right\}$ and $V^{2}=\left\{v_{1}^{2}, \ldots, v_{n}^{2}\right\}$. We call a factorization of $K_{2 n}$ binary if it contains a factorization of $K_{n}\left(V^{1}\right)$ and a factorization of $K_{n}\left(V^{2}\right)$ using colors $1, \ldots, n-1$. Consequently, colors $n, \ldots, 2 n-1$ form a factorization of $K_{n, n}\left(V^{1}, V^{2}\right)$. Also, if the factorizations of $K_{n}\left(V^{1}\right)$ and $K_{n}\left(V^{2}\right)$ are canonical, we call the factorization bicanonical. ${ }^{3}$

A binary factorization is bisymmetric if it satisfies the following:

[^2]

Fig. 4. A bisymmetric one-factorization of K_{8}.

1. the factorization of $K_{n}\left(V^{1}\right)$ and that of $K_{n}\left(V^{2}\right)$ are the same, i.e., $\left[v_{i}^{1}, v_{j}^{1}\right]$ and $\left[v_{i}^{2}, v_{j}^{2}\right.$] have the same color for any $1 \leq i<j \leq n$;
2. if $\left[v_{i}^{1}, v_{j}^{1}\right.$] has color c, then both $\left[v_{i}^{1} v_{j}^{2}\right.$] and $\left[v_{i}^{2}, v_{j}^{1}\right.$] have color $c+n-1$ for any $1 \leq i<j \leq n$.
3. $\left[v_{i}^{1}, v_{i}^{2}\right]$ has color $2 n-1$ for $1 \leq i \leq n$

A bisymmetric factorization of K_{8} is given in Fig. 4.
The above definitions assume that $2 n$ is a multiple of 4 . When $2 n=4 s+2, V^{1}$ and V^{2} have $2 s+1$ nodes. One cannot construct a binary factorization as above.

We can however construct a $(2 s+1)$-coloring of $K\left(V^{1}\right)$ and $K\left(V^{2}\right)$ with colors $1,2, \ldots 2 s+1$. At every node v_{j}^{i} of $K\left(V^{i}\right)$ some color among $1,2, \ldots 2 s+1$ is missing on the edges of $B\left(v_{j}^{i}\right)$. Since we may take the same coloring for $K\left(V^{1}\right)$ and $K\left(V^{2}\right)$, we may assume that j is the color missing both at v_{j}^{1} and v_{j}^{2}. So, we color edges $\left[v_{j}^{1}, v_{j}^{2}\right.$] with color j for $j=1,2, \ldots 2 s+1$.

So far we have obtained a factorization $F_{1}, F_{2}, \ldots, F_{2 s+1}$ of $K\left(V^{1}\right)+K\left(V^{2}\right)+M$ where M is the matching $\left\{\left[v_{i}^{1}, v_{i}^{2}\right] i=\right.$ $1,2, \ldots 2 s+1\}$. The edges of $K\left(V^{1}, V^{2}\right)-M$ (regular bipartite subgraph) can then be colored with $2 s$ colors, which gives $F_{2 s+2}, \ldots, F_{4 s+1}$ (take for instance $F_{2 s+p+1}=\left\{\left[v_{i}^{1}, v_{i+p}^{2}\right] i=1,2, \ldots 2 s+1\right\}$ for $p=1, \ldots 2 s$ and $i+p$ taken modulo $2 s$ between 1 and $2 s$).

Such a factorization of $K_{4 s+2}$ will be called almost binary.

Observation. [6] We recall that there is a simple property which may be used to show that a factorization is not canonical: In a canonical factorization $F_{1}, \ldots F_{2 n-1}$ of $K_{2 n}$, for any choice of $F_{i}, F_{j}, F_{k}(1 \leq i<j<k \leq 2 n-1), G\left(F_{i} \cup F_{j} \cup F_{k}\right)$ contains a triangle. This shows, in particular, that binary and almost binary factorizations of $K_{2 n}$ with $n \geq 4$ are not canonical.

3. L-blockingness

In this section, we investigate the existence of colorful chordless lanterns of different sizes on different classes of factorizations.

Lemma 1 is Theorem 1.4 in [12].
Lemma 1. Let G be a graph $K_{2, n-2}$ with bipartition ($\left\{v_{1}, v_{2}\right\}, V \backslash\left\{v_{1}, v_{2}\right\}$) plus the edge [v_{1}, v_{2}] where $n \geq 4$. Then any edge coloring of G using $2 n-1$ colors can be extended to a proper edge coloring of $K_{2 n}$ using the same set of colors.

The first proposition shows that colorful chordless lanterns of any size (with $2 \leq|W| \leq 2 n-2$) may exist in factorizations of $K_{2 n}$ for any $n \geq 2$.

Proposition 1. Any colorful chordless lantern can be extended to a proper coloring of $K_{2 n}$.

Proof. This is a direct consequence of Lemma 1. We may construct a colorful chordless lantern of any size and then extend the coloring to a graph G as defined in the lemma. The application of the lemma now shows that there is a factorization of $K_{2 n}$ containing the constructed colorful chordless lantern.

In Theorem 2 of [11] the L-blockingness property of factorizations is characterized by the hamiltonian property of the rows (or columns) of the folds of the latin square associated with the factorization.

The next proposition characterizes the values of $2 n$ for which the canonical factorization of $K_{2 n}$ is L-blocking. It uses the concept of faro shuffle permutation. A faro shuffle, also known as riffle shuffle [1], is a permutation π of $2 n$ elements from 0 to $2 n-1$, such that the sequence $(\pi(0), \ldots, \pi(2 n-1))$ is composed by precisely two interleaved increasing sequences. For instance, the faro shuffle permutation of the ordered set $(0,1,2,3,4,5,6,7,8,9)$ can be expressed as:

$$
\begin{array}{c|cccccccccc}
\pi(i) & 0 & 5 & 1 & 6 & 2 & 7 & 3 & 8 & 4 & 9 \\
\hline i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

To apply a faro shuffle permutation in the ordered set $(0,1,2,3,4,5,6,7,8,9)$, first split the set in two halves $(0,1,2,3,4)$ and $(5,6,7,8,9)$. Then, interleave elements one-by-one from each half to get a new ordering ($0,5,1,6,2,7,3,8,4,9$). Notice that the elements of each subset $\{3,6\}$ and $\{1,2,4,5,7,8\}$ change places in a cyclic way within its own subset. These permutation subsets are called "orbits" [9]. A list of the values of $2 n$ for which the faro shuffle permutes all except the first and last elements, i.e., has an orbit of size $2 n-2$, can be found in [14].

Proposition 2. The canonical factorization of $K_{2 n}$ is L-blocking if and only if $2 n-1$ is prime and the faro shuffle permutation with $2 n$ elements has an orbit of size $2 n-2$.

Proof. This is theorem 1 in [9].

Proposition 3. In the canonical factorization of $K_{2 n}(n \geq 2)$, the colorful chordless lantern $L(1,2 n-2, W)$ is trivial.

Proof. In the canonical coloring of $K_{2 n}$ the neighbors of node $2 n-2$ in consecutive one-factors $F_{1}, \ldots F_{2 n-1}$ are $3,5,7, \ldots, 2 n-1,2,4, \ldots, 2 n-4,2 n, 1$. Those of node 1 are $2 n, 3,5, \ldots, 2 n-3,2 n-1,2,4, \ldots, 2 n-6,2 n-4,2 n-2$. Let $W=V \backslash\{1,2 n-2\}$.

Then, ignoring edge [$1,2 n-2$] which has color $2 n-1$, one can construct a colorful chordless lantern $L(1,2 n-2, W)$. The colors of the edges of each path $(2 n-2, w, 1)$ are cyclically consecutive from 1 to $2 n-2$ if we consider each possible value of w in the order $3,5,7, \ldots, 2 n-1,2,4, \ldots, 2 n-4,2 n$, see Fig. 5 . In consequence it is not possible to take any proper subset of W to obtain a nontrivial colorful chordless lantern.

The previous proposition shows how to find a trivial colorful chordless lantern in the canonical coloring of $K_{2 n}$.

Corollary 1. The canonical factorization of $K_{2 n}$ is not L-flexible for any $n \geq 2$.

The next proposition shows that the presence of trivial colorful chordless lanterns is not restricted to canonical colorings.

Fig. 5. A trivial colorful chordless lantern $L(1,2 n-2, W)$.

Fig. 6. Initial pre-coloring.

Proposition 4. Whenever n is even there is a binary factorization of $K_{2 n}$ that is not L-flexible.
Proof. Nodes $v_{1}^{i}, w_{1}^{i}, \ldots, w_{n-1}^{i}$ are the nodes of $V^{i}(i=1,2)$. First, we construct a trivial lantern $L\left(v_{1}^{1}, v_{1}^{2}, W\right)$ as shown in Fig. 6.

For $k=1$ to $n-1$, we have edges [v_{1}^{1}, w_{k}^{1}] with color k and [w_{k}^{1}, v_{1}^{2}] with color $k+n-1$.
For $l=n$ to $2 n-3$ we have edges $\left[v_{1}^{1}, w_{l-n+2}^{2}\right.$] with color l and $\left[w_{l-n+2}^{2}, v_{1}^{2}\right]$ with color $l-n+2$ and finally we have [v_{1}^{1}, w_{1}^{2}] with color $2 n-2$ and [w_{1}^{2}, v_{1}^{2}] with color 1.

So edges $\left[v_{1}^{1}, w_{k}^{1}\right.$] for $k=1, \ldots, n-1$ are in $K\left(V^{1}\right)$ and they are the edges adjacent to v_{1}^{1} with colors $1, \ldots, n-1$ in F_{1}, \ldots, F_{n-1}.

Similarly, edges $\left[v_{1}^{2}, w_{l-n+2}^{2}\right.$] for $l=n, \ldots, 2 n-3$ are in $K\left(V^{2}\right)$, they are the edges adjacent to v_{1}^{2} with colors $2, \ldots, n-1$ in F_{1}, \ldots, F_{n-1}.

Furthermore, $\left[v_{1}^{2}, w_{1}^{2}\right]$ is the edge of color 1 adjacent to v_{1}^{2} in $K\left(V^{2}\right)$.
One verifies that $L\left(v_{1}^{1}, v_{1}^{2}, W\right)$ constructed above is a trivial colorful chordless lantern: starting with [v_{1}^{1}, w_{1}^{1}] of color 1 , we go through [w_{1}^{1}, v_{1}^{2}] of color n, then from [v_{1}^{1}, w_{2}^{2}] of color n, we go through [w_{2}^{2}, v_{1}^{2}] of color 2 and we continue. The colors of the edges followed are consecutively $1 \rightarrow n \rightarrow 2 \rightarrow n+1 \rightarrow \ldots \rightarrow k \rightarrow k+n-1 \rightarrow \ldots \rightarrow 2 n-3 \rightarrow n-1 \rightarrow$ $2 n-2 \rightarrow 1$.

Now the edges of color $n, n+1, \ldots, 2 n-2$ in $L\left(v_{1}^{1}, v_{1}^{2}, W\right)$ together with edge [v_{1}^{1}, v_{1}^{2}] that is colored with color $2 n-1$, give us a set of precolored edges in $K\left(V^{1}, V^{2}\right)$. See Fig. 7.

We now construct the factorization. Renaming and reordering the nodes $w_{i}^{1}, w_{i}^{2}(i=1, \ldots, n-1)$ our problem now reduces to extending a precoloring of a complete bipartite graph $K\left(\overline{V^{1}}, \overline{V^{2}}\right)$ with $\overline{V^{i}}=\left\{v_{1}^{i}, \ldots, v_{n}^{i}\right\}$, ($i=1,2$), edges [$\left.v_{1}^{1}, v_{j}^{2}\right]\left[v_{j}^{1}, v_{1}^{2}\right]$ precolored with color $n-2+j(j=2, \ldots, n)$. We can take the last one-factor in the coloring as $F_{2 n-1}=$ $\left[v_{1}^{1}, v_{1}^{2}\right] \cup\left\{\left[w_{j}^{1}, w_{j}^{2}\right] \mid j=2, \ldots, n\right\}$.

Fig. 7. Precoloring.
Consider now an arbitrary one-factorization $\mathcal{F}=\left(\hat{F}_{1}, \ldots, \hat{F}_{n-1}\right)$ of K_{n}. We construct F_{n-2+j} with precolored edges [$\left.v_{1}^{1}, v_{j}^{2}\right],\left[v_{j}^{1}, v_{1}^{2}\right]$ as follows:

Let \hat{F}_{k} be the one-factor of \mathcal{F} containing edge $[1, j]$; we consider every edge $[p, q]$ of $\hat{F}_{k}(\neq[1, j])$ and introduce $\left[v_{p}^{1}, v_{q}^{2}\right]$ and $\left[v_{q}^{1}, v_{p}^{2}\right.$] into F_{n-2+j}.

We repeat this construction for $j=2, \ldots, n$.
It will give us the one-factors $F_{n}, F_{n+1}, \ldots, F_{2 n-2}$ which together with F_{1}, \ldots, F_{n-1} and $F_{2 n-1}$, obtained earlier, will give us the required factorization of $K_{2 n}$.

The following proposition shows that bisymmetric factorizations are L-flexible.
Proposition 5. In a bisymmetric factorization of $K_{2 n}$ for any two nodes u, v there is a colorful chordless lantern $L(u, v, W)$ with $|W|=2$.

Proof. The nodes are divided in two sets $V^{1}=\left\{v_{1}^{1}, \ldots, v_{n}^{1}\right\}$ and $V^{2}=\left\{v_{1}^{2}, \ldots, v_{n}^{2}\right\}$. We have three cases to examine:

1. $\underline{u, v \in V^{1} \text { or } u, v \in V^{2} \text { : Without loss of generality, let } u=v_{1}^{1} \text { and } v=v_{2}^{1} \text {. Consider }\left[v_{1}^{1}, v_{1}^{2}\right] \text {; its color is } 2 n-1 \text {. If }\left[v_{1}^{1}, v_{2}^{1}\right]}$ has color c, edge $\left[v_{1}^{2}, v_{2}^{1}\right.$] has color $c+n-1$; by construction $\left[v_{1}^{1}, v_{2}^{2}\right]$ has the same color and $\left[v_{2}^{1}, v_{2}^{2}\right]$ has color $2 n-1$. These edges form a colorful chordless lantern $L\left(v_{1}^{1}, v_{2}^{1}, W\right)$ with $W=\left\{v_{1}^{2}, v_{2}^{2}\right\}$ and colors $c+n-1$ and $2 n-1$.
2. $u \in V^{1}, v \in V^{2}$: Let, without loss of generality, $u=v_{1}^{1}$
(a) assume $v=v_{i}^{2}, i \neq 1$; then $\left[v_{1}^{1}, v_{i}^{1}\right]$ has some color c, $\left[v_{1}^{1}, v_{1}^{2}\right]$ and $\left[v_{i}^{1}, v_{i}^{2}\right]$ have color $2 n-1$; $\left[v_{1}^{2}, v_{i}^{2}\right]$ also has color c and we have a colorful chordless lantern $L\left(v_{1}^{1}, v_{i}^{2}, W\right)$ with $W=\left\{v_{i}^{1}, v_{1}^{2}\right\}$ and colors c and $2 n-1$.
(b) let $v=v_{1}^{2}$; then consider edge [v_{1}^{1}, v_{2}^{1}]; it has the same color c, as does edge $\left[v_{1}^{2}, v_{2}^{2}\right]$; the edges $\left[v_{1}^{1}, v_{2}^{2}\right]$ and [v_{1}^{2}, v_{2}^{1}] have color $c+n-1$. They form a colorful chordless lantern $L\left(v_{1}^{1}, v_{1}^{2}, W\right)$ with $W=\left\{v_{2}^{1}, v_{2}^{2}\right\}$ and colors c and $c+n-1$.

The following easy proposition shows that binary factorizations are not L-blocking.
Proposition 6. A binary factorization of $K_{2 n}$ has a colorful chordless lantern $L(u, v, W)$ with $|W| \leq n-2$.
Proof. Take any two nodes u, v, both belonging to $K_{n}\left(V^{1}\right)$. Call W the set of the other nodes in the subgraph. Observe that the set of colors of edges $[u, w], w \in W$ are the same as the set of colors of edges $[w, v], w \in W$ and, in consequence, u, v and W induce a colorful chordless lantern or there is a $W^{\prime} \subset W$ for which u, v and W^{\prime} induce a colorful chordless lantern. The set W has size at most $n-2$.

We have shown that canonical factorizations of $K_{2 n}$ are L-blocking for certain values of $2 n$ and that binary factorizations are not L-blocking. Then, it is natural to ask if there is a non-canonical L-blocking factorization of $K_{2 n}$ for any n. In [11] it is shown that K_{12} has 8 L-blocking factorizations (7 of them not canonical).

Some of the above propositions show that certain factorizations including the canonical and some binary are not Lflexible. Then, Proposition 5 shows that bisymmetric factorizations are L-flexible. One would like to know if L-flexible factorizations exist for values of $2 n$ with n odd. The cases with $2 n \leq 10$ are investigated in section 5 , but for larger values of $2 n$ we state the following open problem.

Open problem 1. Is there at least one L-flexible factorization of $K_{4 s+2}$ for each $s \geq 3$?

4. Optimally colored even cliques of one-factorizations

In this section, we study optimally colored even cliques inside factorizations. We notice that any factorization of $K_{2 n}$ is an optimally colored even clique of size $2 n$. So, here we deal with proper subgraphs of $K_{2 n}$ inducing optimally colored even cliques.

First we note that optimally colored even cliques of any size $r(4 \leq r \leq n)$ exist in some factorizations of $K_{2 n}$.

Observation. For any two even numbers r and n larger than 2, a factorization of K_{r} can be extended to a factorization of $K_{2 n}$ if and only if $r \leq n$

For a proof, see Theorem 2 in [4] or Theorem 14.2 in [16].
We continue with a complete characterization of the optimally colored cliques within the canonical factorizations of $K_{2 n}$.
Proposition 7. A canonical factorization of $K_{2 n}$ contains an optimally colored even clique $K_{2 p}(p \leq n)$ if and only if $2 n=(2 p-1) s+1$.
Proof. Notice that s is necessarily odd. To have a canonical coloring we place nodes $1,2, \ldots, 2 n-1$ on a circle with the same distance between any consecutive nodes and node $2 n$ is in the center of the circle as in Fig. 3.
a) Assume first that $2 n=(2 p-1) s+1$ for some fixed p and s. Consider the set $W=\{1, s+1,2 s+1, \ldots,(2 p-2) s+1\}$; there are exactly $s-1$ nodes between any two consecutive nodes of $W((2 p-2) s+1$ and 1 are considered consecutive in $W)$. Let F_{i}^{\prime} be the edges of F_{i} with both endpoints in $W \cup\{2 n\}$ for $i=1, s+1,2 s+1, \ldots,(2 p-2) s+1$. We have for instance $F_{1}^{\prime}=\{[2 n, 1],[s+1,(2 p-2) s+1],[2 s+1,(2 p-3) s+1], \ldots[p s+1,(p+1) s+1]\}$. Since $s-1$ is even all these p edges are indeed in F_{1} and it is a perfect matching in $W \cup\{2 n\}$. This last property holds for all $F_{i}, i=1, s+1,2 s+1, \ldots,(2 p-2) s+1$. So, $F_{1}^{\prime}, F_{s+1}^{\prime}, F_{2 s+1}^{\prime} \ldots, F_{(2 p-2) s+1}^{\prime}$ is a factorization of the complete subgraph of $K_{2 n}$ induced by $W \cup\{2 n\}$ which has $2 p$ nodes.
b) Conversely, let us assume that there is no s such that $2 n=(2 p-1) s+1$. In other words $2 n-1 \neq(2 p-1) s$ for any integral (odd) s.

First, we show that such a $K_{2 p}$ must necessarily contain node $2 n$. Consider a canonical coloring of $K_{2 n}$ and let $\bar{F}_{1}, \ldots, \bar{F}_{2 n-1}$ be the coloring induced on $K_{2 n}-2 n$. Each \bar{F}_{i} consists of parallel edges in Fig. 3.

Claim 1. There is no optimally colored clique $K_{2 p}$ in the canonical factorization of $K_{2 n}$ without node $2 n$ for $p \geq 2$.
Proof. Let W be a set of $2 p$ nodes of $K_{2 p}$ placed in the circle among $1,2, \ldots, 2 n-1$. If $K(W)$ is optimally colored, the canonical coloring of $K_{2 n}$ induces on $K(W)$ a coloring $\hat{F}_{a_{1}}, \ldots, \hat{F}_{a_{2 p-1}}$ with colors $a_{1}, a_{2}, \ldots, a_{2 p-1} \subseteq\{1, \ldots, 2 n-1\}$ and each \hat{F}_{i} consists of parallel edges since $\hat{F}_{i} \subset \bar{F}_{i}$. But it is not possible to find such a coloring where each \hat{F}_{i} consists of parallel edges covering exactly the nodes of W : if the nodes of W, in the order they appear in the circle, are $b_{1}, b_{2}, \ldots, b_{2 p-1}$, the perfect matching \hat{F}_{g} containing $\left[b_{1}, b_{3}\right]$ cannot consist of parallel edges since the edge $\left[b_{2}, b_{l}\right] \in \hat{F}_{g}$ will cross with $\left[b_{1}, b_{3}\right]$ for any $4 \leq l \leq 2 p-1$. Therefore, no such optimally colored $K_{2 p}$ can possibly exist.

So, an optimally colored $K_{2 p}$ involves node $2 n$ and $2 p-1$ nodes $a_{1}, a_{2}, \ldots, a_{2 p-1}$ distributed arbitrarily among positions $1,2, \ldots, 2 n-1$ on the circle. Since $2 n \neq(2 p-1) s+1$ there will necessarily be three (cyclically) consecutive nodes in the set $\left\{a_{1}, a_{2}, \ldots, a_{2 p-1}\right\}$, say $a_{2 p-1}, a_{1}, a_{2}$, such that the number d of nodes of the circle between $a_{2 p-1}$ and a_{1} is different from the number c of nodes between a_{1} and a_{2}. Now, since we have a canonical coloring the matching containing [2n, a_{1}] should contain $\left[a_{2 p-1}, a_{2}\right.$], but this is impossible since d is different from c. So, we cannot find an optimally colored $K_{2 p}$.

In the previous proposition, if $s=1$, then $p=n$ and the result is trivial. So, if we have $s \geq 3$, the largest value of p is obtained for the smallest odd s such that $p=\frac{2 n+s-1}{2 s}$. We cannot find values of s and p satisfying the equality if $2 n-1$ is prime. Then, the next corollary characterizes the values of $2 n$ for which the canonical coloring of $K_{2 n}$ is K-blocking.

Corollary 2. The canonical coloring of $K_{2 n}$ is K-blocking if and only if $2 n-1$ is prime.
Next, we study binary factorizations. The next remark notes that they are trivially not K-blocking.

Table 1
A classification of the six non-isomorphic factorizations of K_{8}.

| 1 | 1234567213465731247564152637514273661724357162534 | L-flexible |
| :--- | :--- | :--- | :--- |
| 2 | 1234567213465731247564152637514273661725347162435 | L-flexible |
| 3 | 1234567213465731247564162537517263461427357152436 | - |
| 4 | 1234567213465731247564162735517263461425377152436 | - |
| 5 | 1234567213465731427564162537517263461235477152436 | K-blocking |
| 6 | 1234567214365731625474172635512374661527347132456 | C-blocking and K-blocking |

Observation. Binary factorizations of $K_{2 n}$ have, by definition, two optimally colored cliques of size n.

The next proposition shows that for some values of $2 n$ there are almost binary factorizations of K_{n} that are not Kblocking.

Proposition 8. For $K_{4 s+2}$ there is an almost binary factorization which contains two optimally colored cliques of size $s+1$ if s is odd.

Proof. We divide the $4 s+2$ nodes into $V^{i}=\left\{v_{1}^{i}, \ldots, v_{s}^{i}\right\}$ and $W^{i}=\left\{w_{1}^{i}, \ldots, w_{s+1}^{i}\right\}$ for $i=1$, 2. In this proof, the factorizations constructed for $K\left(V^{i} \cup W^{i}\right), i=1,2$, are symmetrical. For $\mathrm{i}=1,2$ we construct in $V^{i} \cup W^{i}$ a factorization of the complete graph $K\left(W^{i}\right)$ with colors $1,2, \ldots, s$ and a coloring of $K\left(V^{i}\right)$ with colors $1,2, \ldots, s$. These colorings exist since $s+1$ is even (and s is odd). Let j be the color among $1,2, \ldots, s$ which is missing on the edges of $B\left(v_{j}^{i}\right)$. Color edge $\left[v_{j}^{1}, v_{j}^{2}\right]$ with color j for $j=1, \ldots, s$.

Then for $i=1$, 2 we color the edges of the complete bipartite graph $K\left(W^{i}, V^{i} \cup v_{0}^{i}\right.$) (where v_{0}^{i} is an artificial node) with colors $s+1, \ldots, 2 s+1$. Consider the edges $B\left(v_{0}^{i}\right)$ for $i=1,2$: if $\left[v_{o}^{i}, w_{j}^{i}\right]$ has color $c(s+1 \leq c \leq 2 s+1)$ then replace $\left[v_{0}^{1}, w_{j}^{1}\right]$ and $\left[v_{0}^{2}, w_{j}^{2}\right]$ by $\left[w_{j}^{1}, w_{j}^{2}\right.$] and give it color c.

So far we have obtained $2 s+1$ one-factors of $K\left(V^{1} \cup W^{1}\right) \cup K\left(V^{2} \cup W^{2}\right)+\mathcal{M}$ where \mathcal{M} is a matching of size $2 s+1$ between $V^{1} \cup W^{1}$ and $V^{2} \cup W^{2}$ whose edges have colors $1,2, \ldots, 2 s+1$.

The edges of $K\left(V^{1} \cup W^{1}, V^{2} \cup W^{2}\right)-\mathcal{M}$ can then be colored with colors $2 s+2, \ldots, 4 s+1$ (since the degree of each node is $2 s$).

In the factorization of $K_{4 s+2}$ constructed, $K\left(W^{1}\right)$ and $K\left(W^{2}\right)$ are optimally colored cliques of size $s+1$.

Before ending this section the next remark shows that K-blockingness is a precondition for both L-blockingness and perfectness.

Observation. In a non-K-blocking factorization of $K_{2 n}$ there is at least one optimally colored even clique $K_{r}, r \leq n$. Taking any 2 nodes of the clique u, v and setting W as the nodes of K_{r} minus u and v, we obtain a chordless colorful lantern $L(u, v, W)$. If we take the edges of K_{r} with any of two colors used in K_{r}, we obtain a cycle or a set of cycles through the nodes of K_{r}. Then, non-K-blocking factorizations of $K_{2 n}$ are neither L-blocking nor perfect.

5. Results for one-factorizations of small complete graphs

In this section, we show some blocking results for factorizations of $K_{2 n}$ for small values of $2 n$. For $2 n \leq 10$ we were able to obtain results by enumeration of all non-isomorphic factorizations or $K_{2 n}$.

For $2 n=4$ and $2 n=6$ there is only one non-isomorphic factorization of $K_{2 n}$. Both are K-blocking, perfect, and L-blocking.
For $2 n=8$ there are 6 non-isomorphic factorizations of K_{8}. Table 1 shows all of the 6 factorizations of K_{8} and classifies them according to the blocking properties studied in this work. Notice that there is no L-blocking factorization of K_{8}.

After checking each factorization of K_{10} available on [3] we obtained the following classification: 227 are just K-blocking, one (the canonical) is C-blocking and K-blocking, three are L-flexible and the remaining 115 do not fall in any category. There is no L-blocking factorization of K_{10}.

In [11] it is shown that K_{12} has 8 L-blocking factorizations.

Observation. There are at least five non-isomorphic K-blocking and one L-flexible factorizations of K_{12}.

Proof. There are 526,915,620 non-isomorphic one-factorizations of K_{12} [7]. Among those factorizations, there are five that are C-blocking [7] and by Observation 4 they must be K-blocking. Moreover, by Proposition 5 the (unique on isomorphism) bisymmetric factorization of K_{12} is L-flexible.

6. Concluding remarks

In this work, we have studied some blocking properties of one-factorizations of complete graphs $K_{2 n}$. For this purpose we have introduced two types of colored subgraphs: colorful chordless lanterns $L\left(v_{1}, v_{2}, W\right)$ and optimally colored even cliques $K_{2 p}$.

These two classes of subgraphs, together with bichromatic cycles, play an important role in recoloring procedures commonly used in algorithmic approaches for sport scheduling problems. With these new concepts in hand, we classified one-factorizations in terms of the existence or not of non-trivial subgraphs of each class. In L-blocking factorizations, there are no non-trivial colorful chordless lanterns and in K-blocking factorizations there are no non-trivial optimally colored even cliques.

Among other results, we characterized the values of $2 n$ for which the canonical factorization of $K_{2 n}$ is L-blocking, showed that the canonical factorization is never L-flexible, determined that there are non-canonical non-L-flexible factorizations and showed how to construct a L-flexible factorization whenever n is even.

Concerning K-blocking, among other results, we characterized the values of $2 n$ for which the canonical factorization of $K_{2 n}$ is K-blocking and proved that there are almost binary factorizations that are not K-blocking.

Observation 4 showed that K-blockingness is a precondition to both perfection, i.e., C-blockingness, and L-Blockingness. Moreover, Corollary 2 shows that the canonical factorization of $K_{2 n}$ is K-blocking if and only if $2 n-1$ is prime. These two facts combined with Proposition 2 show that $2 n-1$ has to be prime for the faro shuffle permutation with $2 n$ elements to have an orbit of size $2 n-2$. Also, knowing that the canonical factorization is perfect whenever $2 n-1$ is prime [16], we conclude that all L-blocking factorizations found in this work are perfect. This might signal that perfection may be a necessary condition for a factorization to be L-blocking. In [11] it is shown that K_{12} has 8 L-blocking factorizations and only 5 perfect factorizations disproving the claim.

As future work we intend to study prohibited precolorings for L-blockingness and K-Blockingness.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Part of this research was carried out while Sebastián Urrutia was visiting EPFL in December 2019. The support of this institution is gratefully acknowledged.

References

[1] M. Aigner, G.M. Ziegler, Proofs from THE BOOK, 4th edition, Springer Publishing Company, Incorporated, 2009.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, 1st edition, Springer Publishing Company, Incorporated, 2008.
[3] C.J. Colbourn, J.H. Dinitz, Handbook of Combinatorial Designs, second edition, Discrete Mathematics and Its Applications, Chapman \& Hall/CRC, 2006.
[4] A.B. Cruse, On embedding incomplete symmetric latin squares, J. Comb. Theory, Ser. A 16 (1) (1974) 18-22.
[5] D. de Werra, Geography, games and graphs, Discrete Appl. Math. 2 (4) (1980) 327-337.
[6] D. de Werra, Scheduling in sports, in: P. Hansen (Ed.), Annals of Discrete Mathematics (11) Studies on Graphs and Discrete Programming, in: NorthHolland Mathematics Studies, vol. 59, North-Holland, 1981, pp. 381-395.
[7] J.H. Dinitz, D.K. Garnick, B.D. McKay, There are 526,915,620 nonisomorphic one-factorizations of K_{12}, J. Comb. Des. 2 (1994) $273-285$.
[8] M. Gill, I. Wanless, Perfect 1-factorisations of k16, Bull. Aust. Math. Soc. 101 (2) (Apr. 2020) 177-185.
[9] T. Januario, S. Urrutia, D. de Werra, Sports scheduling search space connectivity: a riffle shuffle driven approach, Discrete Appl. Math. 211 (2016) 113-120.
[10] T. Januario, S. Urrutia, C.C. Ribeiro, D. de Werra, Edge coloring: a natural model for sports scheduling, Eur. J. Oper. Res. 254 (1) (2016) 1-8.
[11] P. Kaski, A. de Souza Medeiros, P.R.J. Ostergard, I.M. Wanless, Switching in one-factorisations of complete graphs, Electron. J. Comb. 21 (2) (2014) 1-24.
[12] Q. Liu, H. Yap, Edge colorings of $K_{2 n}$ with a prescribed condition - I, Discrete Math. 212 (3) (2000) 233-244.
[13] M. Meszka, There are 3155 nonisomorphic perfect one-factorizations of K_{16}, J. Comb. Des. 28 (1) (2020) 85-94.
[14] OEIS, The on-line encyclopedia of integer sequences foundation, http://oeis.org/A217948, 2020. (Accessed 1 October 2020).
[15] J.A.M. Schreuder, Constructing timetables for sport competitions, Math. Program. Stud. 13 (1980) 58-67.
[16] W. Wallis, One-Factorizations, Mathematics and Its Applications., Springer, 1997.

[^0]: * Corresponding author.

 E-mail addresses: sebastian.a.urrutia@himolde.no, surrutia@dcc.ufmg.br (S. Urrutia), dominique.dewerra@epfl.ch (D. de Werra), januario@ufba.br (T. Januario).

[^1]: ${ }^{1}$ In [12] a lantern was defined as a graph $K_{2, n-2}$ with bipartition ($\left\{v_{1}, v_{2}\right\}, V \backslash\left\{v_{1}, v_{2}\right\}$) plus the edge [v_{1}, v_{2}]. Here, chordless colorful graphs do not have the edge [v_{1}, v_{2}], have a color assigned to each of its edges and obey restrictions on those colors.

[^2]: 2 The name canonical is widely used in sport scheduling literature (see [5,15]). In literature related to one-factorizations of graphs the same factorization is often called a $G K_{2 n}$ (see [16]).
 ${ }^{3}$ A particular bicanonical factorization using a standard factorization of $K_{n, n}\left(V^{1}, V^{2}\right)$ is called $G A_{2 n}$ in the lirerature (see [16]).

