
EURO Journal on Computational Optimization 10 (2022) 100028
Contents lists available at ScienceDirect

EURO Journal on Computational
Optimization

www.elsevier.com/locate/ejco

Exponential extrapolation memory for tabu search

Håkon Bentsen, Arild Hoff, Lars Magnus Hvattum ∗

Faculty of Logistics, Molde University College, Norway

a r t i c l e i n f o a b s t r a c t

Keywords:
0-1 Integer programming
Binary optimization
Adaptive memory
Tabu search

Tabu search is a well-established metaheuristic framework
for solving hard combinatorial optimization problems. At its
core, the method uses different forms of memory to guide
a local search through the solution space so as to identify
high-quality local optima while avoiding getting stuck in the
vicinity of any particular local optimum. This paper examines
characteristics of moves that can be exploited to make good
decisions about steps that lead away from recently visited
local optima and towards a new local optimum. Our approach
uses a new type of adaptive memory based on a construction
called exponential extrapolation. The memory operates by
means of threshold inequalities that ensure selected moves will
not lead to a specified number of most recently encountered
local optima. Computational experiments on a set of one
hundred different benchmark instances for the binary integer
programming problem suggest that exponential extrapolation
is a useful type of memory to incorporate into a tabu search.
© 2022 The Author(s). Published by Elsevier Ltd on behalf
of Association of European Operational Research Societies

(EURO). This is an open access article under the CC
BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.
E-mail addresses: hakon.bentsen@himolde.no (H. Bentsen), arild.hoff@himolde.no (A. Hoff),

hvattum@himolde.no (L.M. Hvattum).
https://doi.org/10.1016/j.ejco.2022.100028
2192-4406/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Association of European
Operational Research Societies (EURO). This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ejco.2022.100028
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ejco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejco.2022.100028&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hakon.bentsen@himolde.no
mailto:arild.hoff@himolde.no
mailto:hvattum@himolde.no
https://doi.org/10.1016/j.ejco.2022.100028
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028
1. Introduction

Tabu search is a metaheuristic framework associated with the use of memory to guide
a search consisting of iteratively making small changes to a current solution. Glover and
Laguna [11] referred to four dimensions relevant to memory structures in tabu search:
recency, frequency, quality, and influence. The two first dimensions complement each
other, in that they roughly correspond to short-term and long-term memory. The quality
dimension is essential, since one would like to learn how to reach good solutions while
avoiding bad solutions. Thus, actions leading to good solutions should be reinforced,
and actions leading to bad solutions should be discouraged. Finally, the dimension of
influence considers how actions change the structure of solution elements.

Laguna and Glover [16] used target analysis to evaluate a tabu search for a class
of sequencing problems. The target analysis works by identifying high quality solutions
for given test instances, and then evaluating the moves made during the search when
applying alternative decision rules. The authors discovered that improving moves were
more likely to introduce attributes of optimal solutions than non-improving moves. That
is, moves made when approaching a local optimum were more likely to make the current
solution more similar to optimal solutions, whereas moves made when retreating from a
local optimum were not. Further details of target analysis were provided by Glover and
Laguna [11].

We are motivated by the study of Laguna and Glover [16] to change the rules cus-
tomarily used in tabu search to select the next move. In doing so we evaluate a form of
adaptive memory based on a function called exponential extrapolation, introduced by
Glover [10], which makes it possible to track the number of times that variables receive
their current values in any selected number of most recent local optima. When selecting
non-improving moves, the idea is that the tabu search should select among those moves
that lead away from recently encountered local optima, thus inducing the search to di-
versify and seek other promising solutions. This is achieved by using the new form of
memory and enforcing a threshold value for moves, such that the allowed moves must
be among those that best avoid moving towards recent local optima.

Talbi [20] presented a summary of different types of memory that have been used in
tabu search. Short-term memory is used to store the recent history of the search. The
main example is the use of tabu lists representing information about recently visited
solutions or recently performed moves, with the primary function to prevent the search
from cycling. Medium-term memory goes beyond the most recent search history, while
not encompassing the entire search. One example of such memory is the storing of good
solutions encountered during the search, so called elite solutions, that can be used to
restart the search by creating a new solution consisting of elements derived from the elite
solutions. Medium-term memory also encompasses recency-based features, as in storing
for each potential component of a solution, the number of iterations since the status of
the component has changed. Medium-term memory is primarily used for intensification
purposes [20]. Long-term memory is often used to support diversification mechanisms,

H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028 3
and includes the use of frequency calculations such as calculating for each component the
number of iterations it has been present or the number of times its status has changed
throughout the entire search. Exponential extrapolation forms a medium-term memory
whose primary function is to diversify the search, or perhaps more accurately to avoid
excessive intensification.

To test the exponential extrapolation memory, we present two basic variants of tabu
search for solving the general binary integer programming (BIP) problem. This problem
can be stated mathematically as

maxZ =
n∑

j=1
cjxj ,

subject to

n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m,

xj ∈ {0, 1}, j = 1, . . . , n,

where all aij , bi, and cj are assumed to be integers (not necessarily positive). The use of
only ≤-constraints is not a limitation, as equality constraints can be converted into a pair
of ≤- and ≥-constraints, whereas ≥-constraints can be transformed into ≤-constraints
after multiplication by −1.

Once we have presented two basic tabu search variants for the BIP, we show how
they can be extended by the use of exponential extrapolation and perform a computa-
tional study to evaluate the effectiveness of including the new form of adaptive memory.
The computational study is performed using benchmark instances from four different
optimization problems that are special cases of the BIP: the optimum satisfiability prob-
lem (OptSAT) [7], the multiple-choice multidimensional knapsack problem (MMKP) [14],
the multidemand multidimensional knapsack problem (MDMKP) [4], and the weighted
max-cut problem (MaxCut) [9].

To summarize, the goal of this work is to analyze and evaluate exponential extrap-
olation, a new form of memory to be used within tabu search. The hypothesis is that
adding exponential extrapolation can help the search to avoid recently visited local op-
tima, which should help the search to be more efficient and thus find better solutions
within a given computational budget. The remainder of this paper is thus structured as
follows. Section 2 contains a description of two basic tabu search variants for the BIP.
Then, the use of exponential extrapolation is explained in Section 3. The computational
study is presented in Section 4, followed by concluding remarks in Section 5.

4 H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028
2. Tabu search

In the following we describe two basic versions of tabu search for solving general
BIPs. They are both based on the same type of neighborhood structure, and both use
a standard attribute-based tabu criterion with a new best aspiration criterion. A simple
restart mechanism is used to improve diversification. The two versions differ in the move
evaluation: one uses a static move evaluation, while the other uses a dynamic move
evaluation that induces a strategic oscillation between feasible and infeasible solutions.
The latter is based on previous implementations of tabu search as made by Arntzen
et al. [1], Cordeau et al. [5], and Hvattum et al. [13]. We refer to the tabu search with a
static move evaluation as S-TS, and the tabu search with a dynamic move evaluation as
D-TS.

The internal representation of the BIP, based on using ranged rows to represent con-
straints, is

maxZ =
n∑

j=1
cjxj ,

subject to

bi ≤
n∑

j=1
aijxj ≤ bi, i = 1, . . . ,m,

xj ∈ {0, 1}, j = 1, . . . , n,

where bi = −∞ for ≤-constraints, bi = ∞ for ≥-constrains, and bi = bi for equality
constraints.

2.1. Neighborhood structure

To search for improvements of a solution we define a simple flip-neighborhood, con-
sisting of changing the value of a single variable from 0 to 1 or from 1 to 0. This implies
that the Hamming distance between a solution x and a neighboring solution x′ is exactly
1. That is, for a solution x we define the neighborhood N(x) as

N(x) = {x′ :
n∑

j=1
|xj − x′

j | = 1}.

2.2. Tabu and aspiration criteria

When a move is made and a variable is flipped, the variable becomes tabu for a
number of iterations. This is called the tabu tenure, and is drawn at random from a

H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028 5
uniform distribution {TMIN , TMIN+1, . . . , TMAX}, based on two parameters TMIN and
TMAX . The tabu status of a variable expires once a number of iterations corresponding
to the tabu tenure has been made, but until that happens the search does not allow the
variable to be flipped.

As this attribute-based tabu tenure is inexact, it may prevent good solutions from
being examined even though they have not been visited before. Therefore, a new best
aspiration criterion is also used: the tabu status of a variable is overridden if flipping the
variable leads to a better solution than the best solution visited by the search so far.

2.3. Initial solution and restarts

The initial solution of the search is a random solution, where each variable is assigned
the value 0 or the value 1 with equal probability. A basic tabu search naturally focuses
on intensification. To ensure that the search has a minimum level of diversification, a
restart mechanism is employed. The idea is to restart from a new randomly generated
solution if the search has performed a large number of iterations without finding a new
best solution. This means we introduce another parameter IR which is the number of
iterations without improvements that is allowed before a random restart takes place.

2.4. Static move evaluation

For the static move evaluation, we first define the sum of activities in constraint
i as Li(x) =

∑n
j=1 aijxj . Then, we define M(x) = {i : bi > Li(x)} as the set of

constraints whose lower bound is violated, and M(x) = {i : bi < Li(x)} as the set
of constraints whose upper bound is violated. To calculate the level of infeasibility, we
consider normalized constraints. Let

ãi =
∑n

j=1 |aij |
|{j : aij �= 0}| .

Then, the normalized constraints become

bi/ãi ≤ Li(x)/ãi ≤ bi/ãi, i = 1, . . . ,m.

Now, a solution is considered to be better than another either if it has a better level of
infeasibility, or it has the same level of infeasibility but a better objective function value.
Formally, for a given solution x, the objective function value is Z(x) =

∑n
j=1 cjxj . The

sum of constraint violations is

V (x) =
∑

i∈M(x)

(bi −
n∑

j=1
aijxj)/ãi +

∑
(

n∑
j=1

aijxj − bi)/ãi,

i∈M(x)

6 H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028
and the number of violated constraints is W (x) = |M(x)| + |M(x)|. Then, the overall
measure of infeasibility is taken as a linear combination of V (x) and W (x), A(x) = V (x) +
λW (x), where A(x) = 0 implies that W (x) = 0 and that the solution is feasible. This
means that x is a better solution than x′ if either 1) A(x) < A(x′), or 2) A(x) = A(x′)
and Z(x) > Z(x′). Bentsen and Hvattum [2] found that a weight of λ = 1 is suitable,
and the same value is used here.

A move can now be evaluated in terms of the change in Z(x) and in A(x). Two
moves can be compared by determining which of the resulting solutions are better.
Defining ΔA

j (x) as the improvement of A(x) when flipping variable j and ΔZ
j (x) as the

improvement in Z(x) when flipping variable j, we say that a move j is better than
another move k if either 1) ΔA

j (x) > ΔA
k (x), or 2) ΔA

j (x) = ΔA
k (x) and ΔZ

j (x) > ΔZ
k (x).

When performing a move, by flipping the value of xj, the sets M(x) and M(x) will in
general change. To efficiently calculate evaluations for the new neighbors after flipping
xj , stored values of Li(x) and Li(x)/ãi must be updated only for constraints i such that
aij �= 0. Furthermore, the evaluation of ΔA

k (x), for k ∈ {1, . . . , n}, must be updated only
for these constraints.

2.5. Dynamic move evaluation

A dynamic move evaluation can encourage the search to move through infeasible
intermediate solutions to find better regions of feasible solutions. An additional weight
w is introduced to balance the importance of feasibility and the objective function value.
The evaluation of a move can then be stated as

Δj(x) = ΔZ
j (x) + wΔA

j (x),

where a move j is better than another move k if Δj(x) > Δk(x). Depending on the
value of w, a move j can be considered better than a move k even if it leads to a worse
solution.

The weight is initialized based on the largest objective function coefficient. Let
cMAX = maxn

j=1 |cj | and cMIN = minn
j=1 |cj |. Then, the initial weight is w =

(cMAX + cMIN)/2. The weight is updated dynamically after each move based on the
status of the current solution. If the current solution is feasible, the weight is de-
creased to put more emphasis on improving the objective function value. That is
w ← w − wDEC(cMAX + cMIN)/2. If the current solution is infeasible, the weight
is increased to put more emphasis on improving the level of infeasibility, setting
w ← w + wINC(cMAX + cMIN)/2. Thus, compared to the static move evaluation, we
need two additional parameters: wINC and wDEC .

3. Exponential extrapolation

The two variants of tabu search described in Section 2 are relatively simple. For S-TS,
memory is only used to store the tabu status of variables, to remember when the last

H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028 7
update was made to the best found solution, and to remember the best found solution
itself. In the D-TS, the only additional type of memory is the weight w, which is a type
of short-term memory that indicates how often feasible solutions have been encountered
during the most recent iterations. We now present a new type of memory, referred to
as exponential extrapolation memory. This was recently introduced by Glover [10] who
described the memory as a main component of a new type of metaheuristic framework
called alternating ascent. Here, the exponential extrapolation memory is incorporated
into the two tabu search variants, resulting in two new variants, which we refer to as
S-TS-E and D-TS-E, respectively.

Using the notation from the static move evaluation, we start with the following defi-
nition: A solution x is a local optimum if for all j ∈ {1, . . . , n} we have either ΔA

j (x) < 0
or both ΔA

j (x) = 0 and ΔZ
j (x) ≤ 0. This definition of a local optimum is also used when

referring to the tabu search using a dynamic move evaluation.

3.1. Definition of memory structure

Let the Q most recent local optima be denoted by xq = (xq
1, x

q
2, . . . , x

q
n) for q =

1, . . . , Q. To measure how frequently and recently local optima have included the assign-
ment xj = 1, we define

E1(j) =
Q∑

q=1
αq−1xq

j .

Similarly, for xj = 0 we have

E0(j) =
Q∑

q=1
αq−1(1 − xq

j).

Using α = 2 allows the values of E1(j) and E0(j) to be stored in a single integer variable
that can easily be updated using right shift and addition operators. That is, when the
search encounters a new local optimum, the values of E1(j) and E0(j) are updated, given
that the current solution now becomes the new most recent local optimum, xQ. This is
accomplished efficiently by exploiting that α = 2 and by storing the values of E1(j)
and E0(j) as integers. Then, considering the newest local optimum xQ, the updates are
performed by setting E1(j) ← �E1(j)/α	 +αQ−1xQ

j and E0(j) ← �E0(j)/α	 +αQ−1(1 −
xQ
j).
For short, we define E(j) to measure how frequently and recently local optima have

included the same value as the current assignment to xj:

E(j) = E1(j)xj + E0(j)(1 − xj),

8 H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028
and we can also define E(j) to measure how frequently and recently local optimal have
included the opposite value as the current assignment:

E(j) = E0(j)xj + E1(j)(1 − xj).

If we define T (r) =
∑Q

q=Q−r α
q−1, and if α ≥ 2, then it follows that variable xj has a

different value than in the r most recent local optima if and only if E(j) < T (r).
The exponential extrapolation values represent the Q most recently visited local op-

tima, thus forming a medium-term memory structure. The calculations can be illustrated
by the following simplified example. If we take Q = 4 (larger values would be used in
practice), use α = 2, consider variable j, and the four most recent local optima had
values x1

j = 1, x2
j = 1, x3

j = 0, and x4
j = 1, we would get

E1(j) = α0x1
j + α1x2

j + α2x3
j + α3x4

j = 1 + 2 + 0 + 8 = 11,

while similarly, E0(j) = 4. If the next local optimum has xj = 0, the new situation would
be characterized by x1

j = 1, x2
j = 0, x3

j = 1, and x4
j = 0. Then we could calculate E1(j)

and E0(j) from scratch, or use the simplified calculations E1(j) = �11/2	 + 0 = 5 and
E0(j) = �4/2	 + 8 = 10.

3.2. Initialization

The initial solution of the search is generated randomly, with each xj being assigned
a value of 1 or 0 with equal probability. At this point no previous local optima have been
visited, and hence the values of E1(j) and E0(j) are simply initialized as if the previous
Q local optima are identical to the random initial solution.

3.3. Modified move selection

The purpose of using exponential extrapolation is to modify the move selection, so
as to improve the search. Tabu search is inherently greedy, in that in each iteration,
the best move is performed subject only to the tabu criterion. We differentiate between
improving and non-improving moves: For the static move evaluation, an improving move
involves flipping xj such that either 1) ΔA

j (x) > 0, or 2) ΔA
j (x) = 0 and ΔZ

j (x) > 0. For
the dynamic move evaluation, a move is considered to be improving if Δj(x) > 0.

When applying exponential extrapolation, we attempt to add a filter that affects only
non-improving moves, since these are the ones that were observed to be less effective in
the study by Laguna and Glover [16]. That is, all improving moves are allowed, but some
non-improving moves are removed from consideration based on a filter that is calculated
using the values of E(j).

We first calculate the maximum, minimum, and average values of E(j), considering
all variables j except those that are tabu. Refer to these values as EMAX , EMIN , and
EAV G. A cut-off value for E(j) is then calculated based on a parameter β ∈ (0, 1]:

H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028 9
ECUT =
{

EAV G + 2(β − 0.5)(EMAX −EAV G) if β ≥ 0.5,
EMIN + 2β(EAV G −EMIN) if β < 0.5.

In this formula, β is used to approximate the (100β)th percentile of the E(j) values. To
decide which move to execute, the search considers all variables j such that E(j) ≥ ECUT

and such that j is not tabu, and then selects the best move satisfying these conditions
according to the move evaluation used.

The consequence of this filter is that when making non-improving moves, the search
avoids those moves that lead back to variable values most similar to those encountered in
the most recent local optimum. This should lead to an increased level of diversification
in the search.

3.4. Additional remarks

There are now four variants of tabu search to consider: S-TS, S-TS-E, D-TS, and
D-TS-E. To analyze the behavior of these variants, in some runs we gather information
about the number of local optima visited, and the number of revisited local optima. To
approximately detect revisited local optima, we adopt a strategy used in solution-based
tabu search, as implemented by Lai et al. [17].

Consider a number of hash functions that each map the solution space to {0, 1, . . . , L −
1}. This is accomplished by defining weights ωju = �jγu	 for each combination of variable
j and hash function u, based on a function-specific parameter γu. Then, for a solution
x, hash values are calculated as

hu(x) =

⎛
⎝ n∑

j=1
ωjuxj

⎞
⎠ mod L.

Now, associate with each hash function hu an array Hu of L binary values initialized as
zeros. Once a local optimum has been reached, Hu is updated by setting Hu(hu(x)) = 1.
Let there be U hash functions in total. Before these are updated, if at least one of
H1(h1(x)), . . . , HU (hU (x)) has the value 0, one can know with certainty that the local
optimum x has not been previously visited. On the other hand, if all of Hu(hu(x)) = 1,
it is very likely that the local optimum has been visited before, although not guaranteed.
In our implementation, we use L = 108, U = 3, with γ1 = 1.9, γ2 = 2.1, and γ3 = 2.3,
as proposed by Lai et al. [17].

4. Computational study

Computational tests are carried out using a standard PC with a 64 bit 3.5 GHz
i5-4690 CPU and 16 GB RAM, running Windows 10. In the following, we describe the
test instances used, the results of parameter tuning, and then the results, focusing first
on search performance and then on search behavior.

10 H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028
Table 1
Characteristics of instances in the training set, averaged per instance
type.

n m non-zeros density
OptSat 440 1,600 37,000 0.0500
MMKP 1,475 121 18,156 0.2197
MDMKP 290 25 6,420 1.0000
MaxCut 12,724 22,887 68,662 0.0005

4.1. Instances

Many different optimization problems can be formulated as a BIP. Appendix A de-
fines the four different optimization problems that are considered in this work: OptSAT,
MMKP, MDMKP, and MaxCut. A total of 120 selected instances are considered, split
into a training set and a test set. The training set consists of five instances from each
problem class, for a total of 20 instances, while the test set consists of 25 instances from
each problem class. The instances have all been used in the existing literature, and we
refer to Davoine et al. [7] and da Silva et al. [6] for OptSAT instances, to Helmberg and
Rendl [12] and Martí et al. [18] for MaxCut instances, to Cappanera and Trubian [4] for
MDMKP instances, and to Khan et al. [15] and Shojaei et al. [19] for instances of the
MMKP. Table 1 provides selected characteristics of the 20 instances in the training set.

4.2. Parameter tuning

Parameters were tuned for each of the four tabu search variants separately, using the
20 instances from the training set. The tuning was performed manually, by iteratively
fixing some parameters and varying the others. Instances were solved for five minutes,
and the solution quality at the end of the runs were used to evaluate which parameter
settings worked better.

For the S-TS we ended up with the parameters TMIN = 10, TMAX = 40, and
IR = 40, 000. In the D-TS, the dynamic changes of the move evaluation helps to diversify
the search and the method can more easily escape local optima. This is reflected in the
final parameter settings, where we have TMIN = 7, TMAX = 32, and IR = 400, 000. That
is, smaller tabu tenures and longer periods between restarts. The parameters specific for
the dynamic move evaluation were set to wINC = 10−6 and wDEC = 0.0125.

In the variants with exponential extrapolation, we used α = 2 without tuning. We also
set Q = 50, which is close to as high as possible without needing special care to avoid
overflow in calculations of ECUT . We expected to see that the addition of exponential
extrapolation would also benefit diversification in general, allowing the search to use
shorter tabu tenures or longer restart intervals in compensation. For S-TS-E we found
the best settings to be TMIN = 5, TMAX = 25, and IR = 20, 000, while using β = 0.25.
For D-TS-E the parameters ended up as TMIN = 7, TMAX = 22, IR = 400, 000, and
β = 0.2.

H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028 11
0 180 360 540 720 900
440

450

460

470

480

490

500

Seconds

Fe
as

ib
le

so
lu

ti
on

s
fo

un
d

S-TS
S-TS-E
D-TS

D-TS-E

Fig. 1. Number of feasible solutions found as a function of time.

4.3. Search performance

The main comparison of the four variants of tabu search is based on runs for the test
set. Each tabu search variant is executed on each of the 100 instances using a time limit
of 15 minutes. Given that the starting solution is random, and that tabu tenures are
randomly drawn, each instance is solved five times with different random seeds.

The performance of the methods is first analyzed by looking at their ability to find
feasible solutions. Fig. 1 shows the development of the number of runs where feasible
solutions have been found as a function of running time. The best method with respect
to finding feasible solutions quickly is S-TS-E, which after 25 seconds has found feasible
solutions in 495 out of 500 runs. The tabu search with a static move evaluation function
and not using exponential extrapolation memory also finds feasible solutions in 495 runs,
but only after 398 seconds. Variants with a dynamic move evaluation are not as good
at finding feasible solutions, and after 900 seconds, D-TS has found feasible solutions in
492 runs whereas D-TS-E has found feasible solutions in 491 runs. There is one MMKP
instance (INST24) where none of the methods find any feasible solutions in any of the
five runs.

In terms of evaluating the effect of adding the exponential extrapolation memory, the
results regarding feasibility are mixed. The tabu search with a static move evaluation
is improved, and the version with exponential extrapolation has the best performance
in terms of finding feasible solutions. However, for the variants with a dynamic move

12 H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028
evaluation, it may seem that adding the new memory makes it harder to find feasible
solutions quickly.

The performance of the methods is next evaluated using the final primal gaps and
the primal integral of Berthold [3]. Consider a solution x with the associated objective
function value Z, and assume that an optimal or best known solution is given with the
objective function value ZOPT . The primal gap of the solution is then defined as

γ(x) =

⎧⎪⎨
⎪⎩

0, if |ZOPT | = |Z| = 0,
1, if ZOPTZ < 0,
|ZOPT − Z|/max{|ZOPT |, |Z|}, otherwise.

A primal gap function p(t) is now defined on [0, T], where T is the running time of
the solution method, such that

p(t) =
{

1, if no feasible solution has been found at time t,

γ(x(t)), otherwise, with x(t) being the best solution found at time t.

The function p(t) measures the quality of the solution found over time for a given
run. The primal integral condenses this information into a single number, by taking the
integral of the primal gap function. In particular, let {t1 = 0, t2, . . . , tτ = T} be a set
containing the points in time that are of interest, i.e., the starting point, any time when
a new best solution is found, and the final time of the run. The primal integral is then
defined as

P (T) =
τ∑

s=1
p(ts−1) · (ts − ts−1).

When considering many runs for a given solution method, the average value of the
primal integrals provides an indication of the performance of the solution method, with
lower values being better. In the following tests, we take the best found solutions within
the tests to obtain a proxy for ZOPT . This means that the primal gaps and primal
integrals presented are not relative to the optimal solutions, but rather to the best
solutions found by the methods compared. Furthermore, we divide the primal integrals
by the total running time, resulting in a number between 0 and 1 representing the average
solution quality during the search process.

Fig. 2 shows the primal gaps as a function of running time. The value of using ex-
ponential extrapolation is clear in the case of using a static move evaluation function:
S-TS-E has smaller gaps than S-TS from a very early stage, and remains lower for the
duration of the runs. When using a dynamic move evaluation, the results are in general
much better than when using a static move evaluation. This is in contrast to the results
for feasibility, where the static move evaluation performed better. Comparing D-TS and
D-TS-E, the lead goes back and forth during the first five minutes of the runs. Then,

H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028 13
0 180 360 540 720 900
0.000

0.050

0.100

0.150

0.200

Seconds

P
ri

m
al

ga
p

S-TS
S-TS-E
D-TS

D-TS-E

Fig. 2. Primal gaps as a function of time.

Table 2
Primal gaps after 15 minutes for each type of instance separately and
in total.

S-TS S-TS-E D-TS D-TS-E
OptSat 0.029 0.025 0.002 0.002
MMKP 0.179 0.175 0.084 0.082
MDMKP 0.046 0.040 0.006 0.005
MaxCut 0.206 0.207 0.054 0.009

All 0.115 0.112 0.036 0.024

from 280 seconds and onwards, the variant with exponential extrapolation retains the
best primal gap.

Looking in more detail at the final average primal gaps after 15 minutes of running
time provides further support for the value of adding exponential extrapolation. Ta-
ble 2 shows the final average gaps, and all the best results belong to variants with the
dynamic move evaluation. For most types of instances, and overall, the variants with ex-
ponential extrapolation memory perform better than the corresponding variant without
exponential extrapolation.

Table 3 shows the variability of performance of different methods on different sets of
instances. This is done through two measures. First, we consider the standard deviation
of the final primal gap across all runs of a given method. This shows how much the
performance varies overall between runs, in the columns labeled “Overall”. Second, we
calculate the standard deviations of final primal gaps by each method for each instances

14 H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028
Table 3
Standard deviations for the final primal gaps, considering both variations between all runs (“Overall”) and
variations within runs for each instance individually (“Instance”).

S-TS S-TS-E D-TS D-TS-E
Overall Instance Overall Instance Overall Instance Overall Instance

OptSat 0.045 0.002 0.043 0.002 0.004 0.001 0.004 0.001
MMKP 0.209 0.004 0.211 0.004 0.243 0.024 0.257 0.023
MDMKP 0.029 0.005 0.026 0.003 0.011 0.003 0.009 0.002
MaxCut 0.152 0.005 0.151 0.007 0.068 0.004 0.027 0.004
All 0.153 0.004 0.154 0.004 0.131 0.008 0.133 0.007

individually, and then we take the average value of this across instances. This indicates
how much the performance of a given method varies between runs on the same instance,
and is presented in the columns labeled “Instance”. The standard deviations for runs
on the same instance is in general small, with one outlier when it comes to D-TS and
D-TS-E on MMKP instances. Standard deviations across instances vary more, indicating
that some problem types are harder to solve than others. The performances of D-TS and
D-TS-E are in general more stable than for S-TS and S-TS-E, except when solving the
MMKP instances. Adding exponential extrapolation memory does not seem to influence
the performance stability to any large extent, except that D-TS-E is more stable than
D-TS on MaxCut instances.

The above discussion indicates that the final primal gaps are, overall, improved when
adding exponential extrapolation. Next, we analyze whether S-TS-E and D-TS-E are
more likely than the corresponding methods without exponential extrapolation to pro-
duce the best result on a given run. To this end we perform pair-wise comparisons
between the 500 final primal gaps, and Table 4 summarizes how many times the method
with exponential extrapolation has the better gap (columns “Win”), the same gap
(columns “Draw”), and the worse gap (columns “Loss”). To test whether the differences
are statistically significant, we use a non-parametric sign-test [8] with the null-hypothesis
that the methods compared are equally likely to produce the better final primal gap in
a given run. This avoids the need to deal with assumptions regarding independence,
normality, and homoscedasticity, that are commonly made in parametric tests.

Comparing S-TS-E and S-TS, the former has 319 runs with a better gap, 159 runs with
a worse gap, and 22 runs with identical gaps. This difference is statistically significant
with a P-value less than 10−12. Comparing D-TS-E and D-TS, the former has 204 runs
with better gaps, 174 with worse gaps, and 122 with equal gaps. The difference here is
not statistically different: the P-value is 0.195 if assuming that draws are supporting a
null-hypothesis that the methods are equally likely to produce the best gap and 0.136 if
instead draws are removed from consideration.

The sign-tests ignore the magnitude of the differences between methods. This means
that the difference between S-TS-E and S-TS is statistically significantly, even if the dif-
ference in the average primal gaps is not very large, as seen in Fig. 2. On the other hand,
the difference between D-TS-E and D-TS is not statistically significant, even though the

H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028 15
Table 4
Pair-wise comparisons of final gaps with and without exponential extrapolation.

S-TS-E vs. S-TS D-TS-E vs. D-TS
Win Draw Loss P-Value Win Draw Loss P-Value

OptSat 95 11 19 0.000 24 69 32 0.530
MMKP 68 5 52 0.178 37 19 69 0.005
MDMKP 97 0 28 0.000 69 16 40 0.012
MaxCut 59 6 60 1.000 74 18 33 0.000

All 319 22 159 0.000 204 122 174 0.195

Table 5
Primal integrals calculated for each type of instance separately and in
total, with the best values highlighted in bold.

S-TS S-TS-E D-TS D-TS-E
OptSat 0.032 0.028 0.004 0.005
MMKP 0.184 0.181 0.141 0.164
MDMKP 0.061 0.045 0.012 0.008
MaxCut 0.214 0.215 0.061 0.015

All 0.123 0.117 0.055 0.048

difference in average final primal gaps is larger. This can be explained by the fact that
relative results differ between types of instances, as observed from Table 2. For both
MDMKP and MaxCut-instances, the final primal gap of D-TS-E is significantly bet-
ter than the gap of D-TS, with P-values of 0.01 and 0.0003, respectively. However, for
MMKP-instances, the final gaps of D-TS are considered to be better than for D-TS-E,
with a P-value of 0.005, despite the fact that the average gap is better for D-TS-E than
for D-TS as seen in Table 2.

The overall primal integrals scaled by total running time are shown in Table 5, which
also shows primal integrals calculated for each type of instance. For MMKP-instances
and OptSAT-instances the D-TS has the best primal integral, but for MDMKP, MaxCut,
and in total, D-TS-E has the best performance. Overall, the results indicate that in
terms of providing high-quality solutions, the dynamic move evaluation is better than
the static move evaluation, and in both cases adding exponential extrapolation has a
positive effect. However, given that D-TS has a better primal integral than D-TS-E on
two problem classes, the effect of adding exponential extrapolation is not as convincing
for the tabu search with a dynamic move evaluation as it is for the tabu search with a
static move evaluation.

4.4. Search behavior

Having established that taking into account exponential extrapolation memory has
a potentially positive effect within a tabu search, some analysis was performed to see
how the use of exponential extrapolation changes the search behavior. To this end we
consider the instances in the training set, which are run for five minutes each while

16 H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028
Table 6
Average number of iterations between local optima, evaluated on the
training set.

S-TS S-TS-E D-TS D-TS-E
OptSAT 250.9 83.1 18,228.7 18,964.9
MMKP 8.2 4.2 14.6 11.7
MDMKP 2.6 2.5 19.2 17.6
MaxCut 1,916.8 885.0 12,500.7 12,525.7

Table 7
Proportion of revisited local optima, evaluated on the training set.

S-TS S-TS-E D-TS D-TS-E
OptSAT 0.006 0.018 0.037 0.020
MMKP 0.799 0.882 0.676 0.731
MDMKP 0.777 0.776 0.538 0.550
MaxCut 0.013 0.133 0.112 0.172

gathering some additional statistics regarding visits to local optima. In particular, we
used the hash functions described in Section 3.4 to determine whether each local optimum
had been previously visited during the search. Recall that a solution x is considered as
a local optimum if for all j ∈ {1, . . . , n} we have either ΔA

j (x) < 0 or both ΔA
j (x) = 0

and ΔZ
j (x) ≤ 0.

Since instances of the four optimization problems considered are quite different in
structure, we present results separately for each type. Table 6 shows, for each type
of problem and each variant of tabu search, the average number of iterations between
visiting a local optimum. The most striking difference is between the methods with a
static move evaluation and methods with a dynamic move evaluation. For the former,
the distance between local optima is much smaller. A possible explanation is that the
dynamic move evaluation does not necessarily favor moves that lead towards a local
optimum, but may in fact prefer moves that make the current solution worse in terms
of feasibility.

There is also a big difference between the four types of optimization problems, with
MMKP and MDMKP leading to short distances between local optima, and OptSAT
and MaxCut having much longer distances. However, the effect of adding exponential
extrapolation is less clear: S-TS-E seems to have fewer iterations between local optima
than S-TS, whereas D-TS-E has either fewer and more iterations compared to D-TS,
depending on the type of problem solved.

Table 7 shows the proportion of revisited local optima, or in other words the ratio of
total minus unique local optima to the total number of local optima. For most situations,
the variants with exponential extrapolation has a higher proportion of revisited local
optima. This may seem counter-intuitive, as we expected the mechanism to favor more
diversification and thus fewer revisited local optima. However, often the combinations
with exponential extrapolation also have fewer iterations between local optima, and are
thus visiting more local optima in total. Thus, even though the number of revisited

H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028 17
Table 8
Average number of unique local optima visited, evaluated on the train-
ing set.

S-TS S-TS-E D-TS D-TS-E
OptSat 318,324 941,116 4,218 3,909
MMKP 1,050,681 1,132,623 934,607 936,862
MDMKP 7,407,072 7,279,117 2,580,630 2,536,445
MaxCut 13,867 17,273 1,730 1,105

Table 9
Final gaps after 15 minutes using original and
D-TS-E parameters.

Original D-TS-E
S-TS 0.116 0.120
S-TS-E 0.112 0.118
D-TS 0.037 0.041
D-TS-E 0.025 —

local optima is higher, in some cases the number of unique local optima visited is also
higher. Table 8 shows the average number of unique local optima visited for the different
combinations of problem classes and methods.

Summarizing the results on search behavior, we can say that there is a large difference
in behavior between different types of instances. Referring to the characteristics of in-
stances in the training set described in Table 1, it appears that the density of constraint
coefficients is an important factor for the number of iterations between local optima and
the proportion of revisited local optima. Furthermore, there is a significant difference in
the behavior of the search depending on whether a static or a dynamic move evaluation
is used. Although it is clear that adding exponential extrapolation memory also changes
the search, the nature of the change is not uniform across methods or instance types.

4.5. Parameter sensitivity

While the main results revealed some differences in the performance of the four meth-
ods investigated, it must be acknowledged that the four methods also had different
parameter settings. In an attempt to highlight the effect of the parameter settings, as
opposed to the effects of the different search components used, an additional experiment
was conducted. Here, we ran each of the three methods S-TS, S-TS-E, and D-TS using
the parameter settings from D-TS-E.

Table 9 shows the final primal gaps and Table 10 shows the primal integrals for both
the original parameters settings, as described in Section 4.2, and for the parameters
settings mimicking D-TS-E. Results are obtained by five runs on each of the 100 instances
in the test set. As can be seen from the tables, the original parameter settings perform
better for all the methods, and we conclude that the good performance of D-TS-E is so
due to the particular combination of search components used, rather than the particular
parameter settings applied.

18 H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028
Table 10
Primal gaps after 15 minutes using original and
D-TS-E parameters.

Original D-TS-E
S-TS 0.123 0.126
S-TS-E 0.118 0.124
D-TS 0.055 0.058
D-TS-E 0.048 —

5. Concluding remarks

The underlying idea of the metaheuristic called tabu search is to use different forms
of adaptive memory to guide a search trajectory with the goal of finding near-optimal
solutions to combinatorial optimization problems. This paper analyses a new type of
memory based on a concept called exponential extrapolation. The new type of mem-
ory is added to two different tabu search implementations for solving binary integer
programming problems.

We find that using the new type of memory improves the performance of the tabu
search implementations, as measured by their primal gaps and the corresponding primal
integral. However, based on the computational study, it is not entirely clear how the
mechanism influences the behavior of the tabu search, as it seems the effect depends
on the structure of the instances solved as well as the type of move evaluation used in
the tabu search. Furthermore, for the best type of tabu search, using dynamic move
evaluations, the improvements from adding exponential extrapolation memory are not
statistically significant when considering results from runs on four different sets of varied
benchmark test instances. This suggests that additional research is required to better
understand the search behavior and how different tabu search mechanisms interact under
different circumstances.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors thank the editors and anonymous reviewers that provided valuable com-
ments and suggestions for how to improve an initial version of the paper.

Appendix A. Test problems

In the following we describe the combinatorial optimization problems that have been
used in the computational experiments to evaluate the exponential extrapolation mem-
ory.

H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028 19
A.1. Optimum satisfiability problem

The optimum satisfiability problem (OptSAT) was suggested by Davoine et al. [7],
who referred to it as the Boolean optimization problem. The mathematical formulation
provided here was described by da Silva et al. [6]. Consider a set of m clauses forming
a Boolean expression that must be satisfied. Let Ai be the set of non-negated variables
appearing in clause i, Bi the set of negated variables, and cj the profit obtained by
setting variable xj to true (equivalently to 1). The problem is then written as

max z =
n∑

j=1
cjxj ,

∑
j∈Ai

xj −
∑
j∈Bi

xj ≤ |Ai| − 1, i ∈ {1, . . . ,m},

xj ∈ {0, 1}, j ∈ {1, . . . , n}.

A.2. Multiple-choice multidimensional knapsack problem

In the multiple-choice multidimensional knapsack problem (MMKP), n disjoint groups
of items, G1, G2, . . . , Gn, are given. Exactly one item j from each group Gi should be
selected. The profit from the selected item is cij . However, the selection is limited by
m knapsack constraints. For knapsack k, a capacity of bk is enforced, and the weight of
item j from group i is aijk. This leads to the following formulation, based on [14]:

max z =
n∑

i=1

∑
j∈Gi

cijxij ,

n∑
i=1

∑
j∈Gi

aijkxij ≤ bk, k ∈ {1, . . . ,m},

∑
j∈Gi

xij = 1, i ∈ {1, . . . , n},

xij ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ Gi.

A.3. Multidemand multidimensional knapsack problem

Cappanera and Trubian [4] presented the most comprehensive early work on the
multidemand multidimensional knapsack problem (MDMKP). The MDMKP combines
knapsack constraints and covering constraints, and can be formulated as

max z =
n∑

cjxj ,

j=1

20 H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028
n∑
j=1

aijxj ≤ bi, i ∈ {1, . . . ,m},

n∑
j=1

aijxj ≥ bi, i ∈ {m + 1, . . . ,m + q},

xj ∈ {0, 1}, j ∈ {1, . . . , n},

where bi > 0 and aij ≥ 0. The MDMKP includes as a special case the multidimensional
knapsack problem when q = 0.

A.4. The weighted max-cut problem

The weighted max-cut problem (MaxCut) is to find a partition of the nodes N of a
weighted, undirected graph G(N, E) into two sets {S ⊂ N, N \ S} such that the sum of
the weights of the edges between the sets is maximized [9]. When allowing non-positive
edge weights, this can be formulated as a binary integer programming problem as follows.

max z =
∑

(u,v)∈E

wuvyuv

yuv − xu − xv ≤ 0, (u, v) ∈ E : wuv ≥ 0,

yuv + xu + xv ≤ 2, (u, v) ∈ E : wuv ≥ 0,

−yuv − xu + xv ≤ 0, (u, v) ∈ E : wuv < 0,

−yuv + xu − xv ≤ 0, (u, v) ∈ E : wuv < 0,

xu ∈ {0, 1}, u ∈ N,

yuv ∈ {0, 1}, (u, v) ∈ E,

where xu indicates which of the two sets to which a given node u ∈ N belongs, yuv equals
1 in the optimal solution only if u and v are in different sets, and wuv is the weight of
the edge between node u and node v. The number of variables in this formulation equals
|N | + |E|, whereas the number of constraints equals 2|E|. The formulation is not very
strong, and it is primarily put forth so that solution methods for general binary integer
programming problems can be compared, rather than to compare with the best available
problem specific solvers.

References

[1] H. Arntzen, L.M. Hvattum, A. Løkketangen, Adaptive memory search for multidemand multidi-
mensional knapsack problems, Comput. Oper. Res. 33 (2006) 2508–2525.

[2] H. Bentsen, L.M. Hvattum, Variable neighborhood search for binary integer programming problems,
Int. J. Metaheuristics (2022), forthcoming.

[3] T. Berthold, Measuring the impact of primal heuristics, Oper. Res. Lett. 41 (2013) 611–614.

http://refhub.elsevier.com/S2192-4406(22)00004-1/bib2D0DA9E830FBD20BEABCF819B3CE1DF4s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib2D0DA9E830FBD20BEABCF819B3CE1DF4s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibAA553B10E741F195D56B5E4673DC2868s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibAA553B10E741F195D56B5E4673DC2868s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib71EFC5FAD5BA61649683B66F154EC1D2s1

H. Bentsen et al. / EURO Journal on Computational Optimization 10 (2022) 100028 21
[4] P. Cappanera, M. Trubian, A local-search-based heuristic for the demand-constrained multidimen-
sional knapsack problem, INFORMS J. Comput. 17 (2005) 82–98.

[5] J.-F. Cordeau, G. Laporte, A. Mercier, A unified tabu search heuristic for vehicle routing problems
with time windows, J. Oper. Res. Soc. 52 (2001) 928–936.

[6] R.F. da Silva, L.M. Hvattum, F. Glover, Combining solutions of the optimum satisfiability problem
using evolutionary tunneling, MENDEL 26 (2020) 23–29.

[7] T. Davoine, P.L. Hammer, B. Vizvári, A heuristic for Boolean optimization problems, J. Heuristics
9 (2003) 229–247.

[8] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,
Swarm Evol. Comput. 1 (2011) 3–18.

[9] P. Festa, P.M. Pardalos, M.G.C. Resende, C.C. Ribeiro, Randomized heuristics for the max-cut
problem, Optim. Methods Softw. 7 (2002) 1033–1058.

[10] F. Glover, Exploiting local optimality in metaheuristic search, arXiv :2010 .05394, 2020.
[11] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publisher, Boston, Dordrecht, London, 1997.
[12] C. Helmberg, F. Rendl, A spectral bundle method for semidefinite programming, SIAM J. Optim.

10 (2000) 673–696.
[13] L.M. Hvattum, A. Løkketangen, F. Glover, Adaptive memory search for Boolean optimization prob-

lems, Discrete Appl. Math. 142 (2004) 99–109.
[14] H. Kellerer, U. Pferschy, D. Pisinger, The multiple-choice knapsack problem, in: Knapsack Problems,

Springer, Berlin, Heidelberg, 2004, pp. 317–347.
[15] S. Khan, K.F. Li, E.G. Manning, M.M. Akbar, Solving the knapsack problem for adaptive multi-

media system, Studia Inform. Universalis 2 (1) (2002) 157–178.
[16] M. Laguna, F. Glover, Integrating target analysis and tabu search for improved scheduling systems,

Expert Syst. Appl. 6 (1993) 287–297.
[17] X. Lai, J.-K. Hao, D. Yue, Two-stage solution-based tabu search for the multidemand multidimen-

sional knapsack problem, Eur. J. Oper. Res. 274 (2019) 35–48.
[18] R. Martí, A. Duarte, M. Laguna, Advanced scatter search for the max-cut problem, INFORMS J.

Comput. 21 (2009) 26–38.
[19] H. Shojaei, T. Basten, M.C.W. Geilen, A. Davoodi, A fast and scalable multi-dimensional multiple-

choice knapsack heuristic, ACM Trans. Des. Autom. Electron. Syst. 18 (4) (October 2013) 51.
[20] E.-G. Talbi, Metaheuristics – From Design to Implementation, John Wiley & Sons, Hoboken, New

Jersey, USA, 2009.

http://refhub.elsevier.com/S2192-4406(22)00004-1/bibA51C1A764C762286CF7725E459DA37D4s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibA51C1A764C762286CF7725E459DA37D4s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib08E5944D1C197AEE43CC7A06ED2C38ACs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib08E5944D1C197AEE43CC7A06ED2C38ACs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib0A4C59407DE9FDDE71A9CDD14095E5ECs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib0A4C59407DE9FDDE71A9CDD14095E5ECs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib7D92D592C5165C99915AB6FD5B5F65DDs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib7D92D592C5165C99915AB6FD5B5F65DDs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib348C2900BE8D373611FF9B9EDD5EB482s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib348C2900BE8D373611FF9B9EDD5EB482s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib348C2900BE8D373611FF9B9EDD5EB482s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib29D4AEA5B47F4BC98575415EC9A43BF5s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib29D4AEA5B47F4BC98575415EC9A43BF5s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibD4D6482BBF2F7B8020F3A861373457A4s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib60AA4CF9364499586D332E0C6633A233s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibDFACC8F991FCB406F714D660F5A39729s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibDFACC8F991FCB406F714D660F5A39729s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib2CF2AE44F9B78B2C27D6366BDC8B3FFCs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib2CF2AE44F9B78B2C27D6366BDC8B3FFCs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib8F30E206CF04A5A48249776D10222187s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib8F30E206CF04A5A48249776D10222187s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibFAF137FB1CC1CE4348C24A242F1E0E9Fs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibFAF137FB1CC1CE4348C24A242F1E0E9Fs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib035C1B64798B4F7385E4E52F75BD1DADs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib035C1B64798B4F7385E4E52F75BD1DADs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibD77FB56E7A435E6C1B4B7831E397CD53s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibD77FB56E7A435E6C1B4B7831E397CD53s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib830D5D8C4750E04452FF273902093ACEs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib830D5D8C4750E04452FF273902093ACEs1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib926B80ED078A5052CC39FE5B65EF8077s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bib926B80ED078A5052CC39FE5B65EF8077s1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibCB2A0AF1C28C82698C418536E6C4D09Ds1
http://refhub.elsevier.com/S2192-4406(22)00004-1/bibCB2A0AF1C28C82698C418536E6C4D09Ds1

	Exponential extrapolation memory for tabu search
	1 Introduction
	2 Tabu search
	2.1 Neighborhood structure
	2.2 Tabu and aspiration criteria
	2.3 Initial solution and restarts
	2.4 Static move evaluation
	2.5 Dynamic move evaluation

	3 Exponential extrapolation
	3.1 Definition of memory structure
	3.2 Initialization
	3.3 Modified move selection
	3.4 Additional remarks

	4 Computational study
	4.1 Instances
	4.2 Parameter tuning
	4.3 Search performance
	4.4 Search behavior
	4.5 Parameter sensitivity

	5 Concluding remarks
	Declaration of competing interest
	Acknowledgements
	Appendix A Test problems
	A.1 Optimum satisfiability problem
	A.2 Multiple-choice multidimensional knapsack problem
	A.3 Multidemand multidimensional knapsack problem
	A.4 The weighted max-cut problem

	References

