
Variable neighborhood search for binary integer programming problems

Håkon Bentsen and Lars Magnus Hvattum

Faculty of Logistics

Molde University College, Norway

hakon.bentsen@himolde.no, hvattum@himolde.no

October 5, 2021

Abstract

General solvers exist for several types of optimization problems, with the commercially

available solvers for mixed integer programming (MIP) being a prime example. Although

binary integer programming (BIP) can be used to model a wide variety of important com-

binatorial optimization problems, relatively few contributions have been made to develop

heuristic algorithms for BIP. This paper examines whether variable neighborhood search

can be successfully used to tackle BIP instances, when avoiding very large neighborhoods

explored by the means of external MIP solvers. The results indicate that methods based

on variable neighborhood search are more successful than exact and heuristic commercial

solvers on certain types of instances, while the opposite holds true on others. A general

variable neighborhood search proves very e�ective on instances with up to 200 variables, in

particular some instances that are tightly constrained.

Keywords: black-box solver; 0-1 integer programming; variable neighborhood descent; math-

ematical programming.

Biographical notes: Håkon Bentsen is a PhD student at Molde University College, Norway.

He has a Master of Science in Logistics from the Molde University College, from 2016.

Lars Magnus Hvattum is a Professor of Quantitative Logistics in the Faculty of Logistics at

Molde University College. He has a PhD in Logistics from the Molde University College in 2007,

and a Cand. Scient Degree in Informatics from the University of Bergen, Norway, in 2003.

1 Introduction

Binary integer programming (BIP) can be used to model a wide range of hard optimization

problems with many important real world applications (Koch et al., 2011). Even so, there is a

1

relative scarcity of solvers targeting this particular class of problems (Bertsimas et al., 2013),

with most e�orts either focusing on speci�c binary optimization problems or even more general

formulations, such as mixed integer programming (MIP).

Among heuristics developed speci�cally for BIP, it is worthwhile to mention the black box scatter

search by Gortázar et al. (2010), and the local search by Bertsimas et al. (2013). Al-Shihabi

(2021) created a matheuristic for BIP based on local search and the core concept (Huston et al.,

2008), but tested the proposed method on a limited set of test instances. Other researchers

have focused on speci�c aspects of solving binary optimization problems. Trapp and Konrad

(2015) considered how to �nd multiple di�erent optimal or near-optimal solutions by using frac-

tional programming, while Glover et al. (2019) discussed how to systematically generate diverse

solutions to binary optimization problems for use within heuristic solution methods. Exact

algorithms for BIP also receive sporadic attention. Glover et al. (2021) recently investigated

bookkeeping details of implicit enumeration, an algorithm suggested a long time ago by Balas

(1965).

The motivation for this paper is to examine whether variable neighborhood search (VNS) is a

viable metaheuristic for solving BIPs. In particular, the aim is to develop an understanding

regarding which types of neighborhood structures can be useful within the VNS framework when

the problem solved is of such a general character, without speci�c concrete problem structures

to exploit. To this end, the focus is on the simplest form of VNS, namely variable neighborhood

descent (VND). In addition, a general variable neighborhood search (GVNS) is examined, wherein

the VND is used as a subroutine. Hansen et al. (2010) provide an extensive overview of VNS in

many forms and for several applications.

When implementing VND, one seeks to de�ne a hierarchy of neighborhoods, so that once the

current solution is a local optimum with respect to the current neighborhood, the exploration

continues with the next neighborhood in the hierarchy. If an improved solution is found in a

neighborhood, the move is performed and the search moves back to the initial neighborhood.

While VNS has been applied to several types of binary optimization problems, the neighbor-

hoods are often explored by mathematical programming solvers. Puchinger and Raidl (2008)

implemented a VNS for the multidimensional knapsack problem (MKP), with neighborhoods

being explored using a MIP solver. The neighborhoods consisted of either removing or adding

an exact number of items, and then adding or removing any number of other items to either

improve the solution or regain feasibility. Hana� et al. (2009) also considered the MKP and a

MIP solver to explore neighborhoods. Turajli¢ and Dragovi¢ (2012) considered a multiple-choice

multidimensional knapsack problem (MMKP) for selecting web services, and used tabu search as

2

the local search algorithm in a VNS. The neighborhoods considered were de�ned by the number

of services for which the solutions can di�er. Hansen et al. (2006) focused on more general MIP

problems, but de�ned neighborhoods in terms of the binary variables of the problem. Again, a

MIP solver was used to explore neighborhoods.

Rather than relying on external MIP solvers to explore neighborhoods, this paper focuses on

de�ning neighborhoods that can be explored systematically using specially tailored code. This

follows the structure of the improvement method by Gortázar et al. (2010), which consisted of

two neighborhoods: one considering �ipping the value of a single variable, and one considering

swapping the values of two variables. Two di�erent types of neighborhoods are considered for

the VND here: one consists of simultaneously �ipping a given number of variables, while the

other consists of �rst �ipping a given number of variables and then sequentially �ipping addi-

tional variables as long as it bene�ts the resulting solution. For both types of neighborhoods, the

motivation is to derive a hierarchy of neighborhoods of increasing complexity. The �rst general-

izes standard neighborhoods for binary optimization problems, whereas the second is somewhat

related to the concept of ejection chains (Rego et al., 2004).

Hierarchies of neighborhoods based on simultaneously �ipping variables tend to grow very quickly

in size, as a function of the number of variables �ipped. Strategies to reduce the size of the

neighborhoods are therefore relevant. In this work we investigate three strategies, based either

on splitting neighborhoods into di�erent parts or on avoiding the evaluation of certain moves

based on the structure of the constraint matrix. Furthermore, besides techniques to reduce the

size of neighborhoods, the e�ciency of the VND may depend on the strategy chosen for exploring

the neighborhoods, such as the sequence of neighborhoods or whether to use best improvement

or �rst improvement when selecting moves.

The aim of the work is to examine whether VNS is a viable strategy for solving the general

BIP. This can be summarized in three research questions to be addressed: 1) can a useful and

meaningful hierarchy of neighborhoods be devised, 2) are methods proposed to reduce the neigh-

borhood size e�ective when used within a VNS, and 3) are the obtained solutions competitive

when compared with primal bounds obtained within the same time limits by available commercial

software that can be used to solve BIP.

The remainder of this paper is structured as follows. Section 2 provides a formal de�nition of the

BIP, as well as BIP formulations of three widely di�erent binary optimization problems that are

used in computational experiments to evaluate the research questions. Then, Section 3 describes

in detail the implementations of the VND and GVNS and the di�erent neighborhood structures

3

considered. The computational experiments, including initial experiments on a training set of

instances and �nal experiments on a test set of instances, are described in Section 4. The

conclusions regarding the research questions are presented in Section 5.

2 Problem description

In this section we �rst present the general formulation of a BIP, and then provide details on

three types of specialized problems that are used to obtain test instances for the computational

experiments.

2.1 Binary integer programming problem

The target is to create a solver for the BIP formulated w.l.o.g. as:

maxZ =
n∑

j=1

cjxj ,

subject to

n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m,

xj ∈ {0, 1}, j = 1, . . . , n,

where all aij , bi, and cj are assumed to be integers (not necessarily positive). This formula-

tion does not exclude instances with equality constraints or ≥-constraints, as the former can be

transformed into two inequalities of opposite directions and the latter can be transformed into

a ≤-constraint by multiplying with −1. Non-integral rational coe�cients can be converted into

integers by scaling each constraint of the problem by the least common multiple of the denom-

inators of the non-zero coe�cients in the constraint. The same process can be applied if there

are rational coe�cients in the objective function.

In the following we describe three di�erent combinatorial optimization problems that can be

formulated as BIPs and that are used in the computational experiments presented later. The

choice of problems is based on the diverse structure of the benchmark instances used in the

literature, which is emphasized in the description below.

4

2.2 Optimum satis�ability problem

The optimum satis�ability problem (OptSAT) was put forth by Davoine et al. (2003), who re-

ferred to it as the Boolean optimization problem. The mathematical formulation used here was

described by da Silva et al. (2020). Consider a set of m clauses forming a Boolean expression

that must be satis�ed. Let Ai be the set of non-negated variables appearing in clause i, Bi the

set of negated variables, and cj the pro�t obtained by setting variable xj to true (equivalently

to 1). The problem is then written as

max z =
n∑

j=1

cjxj ,∑
j∈Ai

xj −
∑
j∈Bi

xj ≤ |Ai| − 1, i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}.

2.3 Multidemand multidimensional knapsack problem

Cappanera and Trubian (2005) presented the most comprehensive early work on themultidemand

multidimensional knapsack problem (MDMKP). The MDMKP combines knapsack constraints

and covering constraints, and can be formulated as

max z =
n∑

j=1

cjxj ,

n∑
j=1

aijxj ≤ bi, i ∈ {1, . . . ,m},

n∑
j=1

aijxj ≥ bi, i ∈ {m+ 1, . . . ,m+ q},

xj ∈ {0, 1}, j ∈ {1, . . . , n},

where bi > 0 and aij ≥ 0. The MDMKP includes as a special case the MKP when q = 0. Lai

et al. (2019) provided a comprehensive overview of recent contributions for the MDMKP.

5

2.4 Multiple-choice multidimensional knapsack problem

In the MMKP, n disjoint groups of items, G1, G2, . . . , Gn, are given. Exactly one item j from

each group Gi should be selected. The pro�t from the selected item is cij . However, the selection

is limited bym knapsack constraints. For knapsack k, a capacity of bk is enforced, and the weight

of item j from group i is aijk. This leads to the following formulation:

max z =
n∑

i=1

∑
j∈Gi

cijxij ,

n∑
i=1

∑
j∈Gi

aijkxij ≤ bk, k ∈ {1, . . . ,m},

∑
j∈Gi

xij = 1, i ∈ {1, . . . , n},

xij ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ Gi.

All of the aijk-parameters are non-negative and all of bk and cij are strictly positive. As opposed

to the OptSAT and the MDMKP, the MMKP includes equality restrictions that are non-trivial

to satisfy in combination with the knapsack constraints.

3 Variable neighborhood search

The basic structure of the VND is taken from the introductory text by Hansen et al. (2010). As

the resulting method is intended to be run until a given time limit, our implementation involves

a random restart, where each time the VND is started from a randomly generated solution.

Pseudo-code for the overall VND is given in Algorithm 1.

6

Algorithm 1 Pseudo-code for variable neighborhood descent.

1: Input: the number of neighborhoods kMAX

2: Initialize xBEST as an arbitrary solution

3: while time limit is not reached do

4: Generate x such that each xj is randomly set to 0 or 1

5: Set k ← 1

6: while time limit is not reached and k ≤ kMAX do

7: Let x′ ∈ Nk(x) be the best, or �rst improving, neighbor of x in Nk

8: if x′ is better than x then

9: x← x′

10: k ← 1

11: else

12: k ← k + 1

13: end if

14: end while

15: if x is better than xBEST then

16: xBEST ← x

17: end if

18: end while

19: Output: the best solution found xBEST

A VND can be used as a part of a GVNS, in which the VND is used to improve solutions

obtained by shaking the current solution by executing a random move from given neighborhoods.

Algorithm 2 provides pseudo-code for this variant of VNS, which is based on the description by

Hansen et al. (2010). The outer neighborhoods used to shake the solution are typically larger

than the neighborhoods used within the VND.

7

Algorithm 2 Pseudo-code for general variable neighborhood search.

1: Input: the number of outer neighborhoods kMAX

2: Initialize xBEST as an arbitrary solution

3: while time limit is not reached do

4: Generate x such that each xj is randomly set to 0 or 1

5: Set k ← 1

6: while time limit is not reached and k ≤ kMAX do

7: Select at random x′ ∈ Nk(x)

8: Improve x′ using VND, to obtain x′′

9: if x′′ is better than x then

10: x← x′′

11: k ← 1

12: else

13: k ← k + 1

14: end if

15: end while

16: if x is better than xBEST then

17: xBEST ← x

18: end if

19: end while

20: Output: the best solution found xBEST

3.1 Problem representation

The internal representation of the problem is

maxZ =

n∑
j=1

cjxj ,

subject to

bi ≤
n∑

j=1

aijxj ≤ bi, i = 1, . . . ,m,

xj ∈ {0, 1}, j = 1, . . . , n,

8

where bi = −∞ for ≤-constraints, bi =∞ for ≥-constrains, and bi = bi for equality constraints.

Thus, for each constraint we store the values of bi and bi, in addition to the current constraint

values Li =
∑n

j=1 aijxj . The technology coe�cients aij often represent a sparse matrix A.

Therefore, it is ine�cient to store the complete matrix, and instead we store, for a given constraint

i, the following information:

� A vector of the indices j for which aij 6= 0.

� A vector of the values aij for the indices j in the previous vector.

We also store, for each variable j, the following information:

� A vector of the indices i for which aij 6= 0.

� A vector of the values aij for the indices i in the previous vector.

De�ne M(x) = {i : bi > Li} as the set of constraints whose lower bound is violated, and de�ne

M(x) = {i : bi < Li} as the set of constraints whose upper bound is violated. To facilitate the

evaluation of neighbors, we consider normalized constraints. Let ãi be the average absolute value

of non-zero coe�cients in constraint i. That is

ãi =

∑n
j=1 |aij |

|{j : aij 6= 0}|
.

Then, the normalized constraints become

bi/ãi ≤ Li/ãi ≤ bi/ãi, i = 1, . . . ,m.

3.2 Solution evaluation

To execute the VND, it must be clearly de�ned what is meant by stating that a solution x′

is better than another solution x. Given a random starting solution, the choice here is to

di�erentiate between solutions both based on their objective function values and their levels of

infeasibility. A solution is better than another either if it has a better level of infeasibility, or it

has the same level of infeasibility but a better objective function value. To express this formally,

9

for a given solution x, let the objective function value be denoted by

Z(x) =

n∑
j=1

cjxj .

The sum of constraint violations can be expressed as

V (x) =
∑

i∈M(x)

(bi −
n∑

j=1

aijxj)/ãi +
∑

i∈M(x)

(
n∑

j=1

aijxj − bi)/ãi.

In addition, the number of violated constraints is

W (x) = |M(x)|+ |M(x)|.

We then create an overall measure of the infeasibility level as A(x) = V (x) +αW (x), where α is

a parameter used to balance whether it is worse to violate few constraints by a large amount or

many constraints by a small amount. Thus, if W (x) = W (x′) = 0 and Z(x) > Z(x′), then x is

a better solution than x′. Otherwise, if W (x) > 0, solution x is better than x′ if A(x) < A(x′)

or if both A(x) = A(x′) and Z(x) > Z(x′).

3.3 Neighborhood operators with simultaneous �ips

Perhaps the most natural way to generate a hierarchy of neighborhoods for problems with only

binary variables is to consider simultaneously �ipping a given number p = 1, 2, . . . of variables.

However, with increasing p, the size of the neighborhoods grows very quickly, with n!/(p!(n−p)!)
neighbors for an instance with n variables. To reduce the size of the resulting neighborhoods

we also consider the sum of the variables that changes. That is, for a solution x, we consider

neighborhoods Npq(x) consisting of �ipping any p variables such that the sum of the values of

the �ipped variables is equal to either q or −q:

Npq(x) = {x′ :

n∑
j=1

|xj − x′j | = p, |
n∑

j=1

(xj − x′j)| = q}.

Table 1 lists the combinations of p and q that are considered in this paper. If we include

neighborhoods with su�ciently large p, �nding the optimal solution is theoretically guaranteed,

10

since the optimal solution must contain exactly k variables that are di�erent from the current

solution, with 0 ≤ k ≤ n. However, given how the number of neighbors grow with p, it is

unlikely that p > 4 can be used in practice. Already for p > 2, the size of the neighborhoods

may become prohibitive for BIP instances with many variables. Although there are some simple

strategies that can make neighborhood exploration more e�ective for higher p, such as using �rst

improvement instead of best improvement, or by exploring the neighborhood only if the current

solution is feasible, we also consider additional neighborhood reduction techniques.

Table 1: List of neighborhood operators considered for simultaneous �ips of variables

p q Neighborhood description

1 1 Single-�ip
2 0 Swap
2 2 Double-�ip, but only with two variables from 1 to 0, or two from 0 to 1
3 1 Triple-�ip, excluding moves �ipping three variables from 1 to 0 or 0 to 1
3 3 Triple-�ip, but only moves �ipping three variables from 1 to 0 or 0 to 1
4 0 Double-swap
4 2 Quad-�ip, but only with exactly three variables from 1 to 0 or vice versa
4 4 Quad-�ip, but only with exactly four variables from 1 to 0 or vice versa

A basic idea to reduce the size of neighborhoods with p > 1 is based on considering a set of pairs

P ⊆ {1, . . . , n}×{1, . . . , n} such that (j, l) ∈ P if and only if there is a constraint i where aij 6= 0

and ail 6= 0. That is, both variables j and l have non-zero coe�cients in some constraint. We

can then create reduced neighborhoods by considering

NP
pq(x) = {x′ :

n∑
j=1

|xj − x′j | = p, |
n∑

j=1

(xj − x′j)| = q,

∀j∃l : l 6= j ∧ |xj − x′j + xl − x′l| = 2→ (j, l) ∈ P}.

That is, we only �ip a pair of variables if they both appear together in at least one of the

constraints. This basic idea can be taken further, by also considering that the variables should

have opposite contributions to at least one of the constraint that they share. Let V be the set of

variables to �ip. Not only should we have (j, l) ∈ P if j, l ∈ V , but we should also demand that

there is at least one constraint where a variable in V has an opposite contribution to another

variable in V : ∀j ∈ V : ∃l ∈ V : ∃i : l 6= j ∧ (1 − 2xj)(aij)(1 − 2xl)(ail) < 0. Note that

(1− 2xj)(aij) < 0 if �ipping variable xj will decrease Li, so that (1− 2xj)(aij)(1− 2xl)(ail) < 0

if and only if �ipping xj and �ipping xl have opposite e�ects on Li. We can state this reduced

11

neighborhood as:

NO
pq(x) = {x′ :

n∑
j=1

|xj − x′j | = p, |
n∑

j=1

(xj − x′j)| = q,

∀j∃l : l 6= j ∧ |xj − x′j + xl − x′l| = 2→ ∃i : (1− 2xj)(aij)(1− 2xl)(ail) < 0}.

Given these de�nitions, NO
pq ⊆ NP

pq ⊆ Npq. Algorithm 3 provides pseudo-code for exploring

the neighborhood Npq. The pseudo-code provided assumes a best improvement search. It can

be modi�ed to a �rst improvement search by halting the while-loop as soon as a solution with

∆A > 0 is found, or alternatively a solution with ∆A = 0 and ∆Z > 0.

Algorithm 3 Pseudo-code for exploring Npq(x).

1: Inputs: p, q, x, α

2: Initialize pointers to variables: v(1)← 1, v(2)← 2, . . . , v(p)← p

3: Calculate currentW and currentV as the infeasibility levels of x

4: bestmove← [v(1), v(2), . . . , v(p)], best∆Z ← −∞, best∆W ← −∞, best∆A← −∞
5: if currentW = 0 then

6: best∆Z ← 0, best∆W ← 0, best∆A← 0

7: end if

8: while v(p) ≤ n do
9: if |

∑p
j=1(2xv(j) − 1)| = q then

10: Calculate ∆Z as the change in objective function value when �ipping v(1), . . . , v(p)

11: if best∆W < currentW or (best∆W = currentW and ∆Z > best∆Z) then

12: Calculate ∆V and ∆W for the current neighbor

13: ∆A← ∆V + α∆W

14: if ∆A > best∆A or (∆A = best∆A and ∆Z > best∆Z) then

15: bestmove← [v(1), v(2), . . . , v(p)]

16: best∆Z ← ∆Z, best∆W ← ∆W , best∆A← ∆A

17: end if

18: end if

19: end if

20: Move to next neighbor using Algorithm 4

21: end while

22: Output: bestmove, best∆Z, best∆W , best∆A.

12

The exploration of NP
pq(x) and NO

pq(x) can be done very similarly to Algorithm 3, but with

an added step just before Step 10. For NP
pq(x), an n by n matrix is precalculated, indicating

whether or not variables j and l appear in any of the same constraints. Then, calculations can

be skipped if p > 1 and for any variable involved in the move, there are no other variables �ipped

that appear in any of the same constraints. For NO
pq(x) two n by n matrices are precalculated:

one for the case that xj and xl have the same value, and one for the case that xj and xl have

di�erent values in the current solution. Then, the matrices indicate whether or not there exists

a constraint i with both xj and xl appearing, such that �ipping xj and xl has opposite e�ects on

Li, given their current values. If p > 1 and there is a variable to be �ipped that does not have

any such opposite variable also being �ipped, the move is skipped.

Algorithm 4 Find next neighbor.

1: Inputs: n, p, v(1), v(2), . . . , v(p).

2: index = p

3: while index > 0 do

4: v(index)← v(index) + 1

5: for subindex = index+ 1, . . . , p do

6: v(subindex)← v(subindex− 1) + 1

7: end for

8: if v(p) > n and index > 1 then

9: index← index− 1

10: else

11: index = 0

12: end if

13: end while

3.4 Neighborhood operators with sequential �ips

In a second hierarchy of neighborhoods, some �ipped variables are determined sequentially. For a

given value of r = 1, 2, . . ., a neighborhood Nr(x) of x is de�ned consisting of n−r+1 neighbors,

where each neighbor is determined by �rst �ipping r variables, and then sequentially considering

each of the remaining variables and deciding whether or not to also �ip each of them. First,

sort variables according to cj(1 − 2xj) in decreasing order. That is, in order of worse e�ect on

the objective function if the variable is �ipped. In the case of instances where cj = cl for a

large number of variables j 6= l, we use cj(1 − 2xj) +
∑m

i=1 |aij/(mãi)| as the sorting criterion,

13

which makes the magnitude of the technology coe�cients a tie-breaker if two variables have

equal objective function coe�cients. Let s(t) be the variable in position t of the sorted list,

t = 1, . . . , n.

For r = 1, 2, . . . we can now de�ne a neighborhood Nr containing n − r + 1 solutions. Move

number t can be described as �rst �ipping variables s(t), . . . , s(t+r−1), which implies a total of

r �ips. Then, the variables s(1), . . . , s(t− 1), s(t+ r), . . . , s(n) are considered sequentially. Each

of them is �ipped, in addition to any previously considered �ips, if the additional �ip myopically

improves the solution implied by the previous set of �ips.

Following the idea of NO
pq, we speed up the neighborhood exploration by enforcing that the

additionally �ipped variables appear in at least one constraint together with one of the previously

�ipped variables, and that they also have opposite e�ects on at least one constraint. We refer to

these variants of Nr as NP
r and NO

r , and they are implemented by checking the corresponding

matrices before Step 10 of Algorithm 5.

14

Algorithm 5 Pseudo-code for exploring Nr(x).

1: Inputs: r, x, α

2: Calculate a sorted list of variables, s(1), . . . , s(n)

3: Calculate currentW and currentV as the infeasibility levels of x

4: bestmove← [v(1), v(2), . . . , v(p)], best∆Z ← −∞, best∆W ← −∞, best∆A← −∞
5: for t = 1, . . . , n− r + 1 do

6: currentmove← [s(t), s(t+ 1), . . . , s(t+ r − 1)]

7: Calculate ∆Z, ∆W , and ∆A for currentmove

8: for t′ = 1, . . . , n do

9: if s(t′) not �ipped in currentmove then

10: if Adding s(t′) to currentmove leads to a better solution then

11: Add s(t′) to currentmove

12: Update ∆Z, ∆W , and ∆A for currentmove

13: end if

14: end if

15: end for

16: if ∆A > best∆A or (∆A = best∆A and ∆Z > best∆Z) then

17: bestmove← currentmove

18: best∆Z ← ∆Z, best∆W ← ∆W , best∆A← ∆A

19: end if

20: end for

21: Output: bestmove, best∆Z, best∆W , best∆A.

4 Results and discussion

To evaluate whether VNS is a viable strategy for solving the BIP, the VND and the GVNS were

implemented in C++. Computational tests on instances based on the OptSAT, the MDMKP, and

the MMKP were run using a PC with a 64 bit 3.5GHz i5-4690 CPU with 16 GB RAM, running

Windows 10. For comparisons, the same instances were also solved using CPLEX version 12.10

and LocalSolver version 10.0. CPLEX is an exact mixed-integer programming solver using a

branch-and-cut procedure (CPLEX, 2020), while LocalSolver is primarily based on a heuristic

local search (Benoist et al., 2011), with a recent addition of the ability to �nd dual bounds

(Boulmier, 2020). A third benchmark method is also used, consisting of a best-improvement

local search (BILS) using the 1-�ip neighborhood and restarting with new random solutions

15

when a local optimum has been reached.

In the computational testing we follow the protocol of selecting a training set of instances for

tuning parameters of the heuristics and a test set of instances for evaluating the �nal settings.

These sets of instances are non-overlapping, and are selected to be representative of the problem

classes considered. While the results on the test set provide a basis for truthfully assessing

the performance of the VND and the GVNS, we also provide results for an additional set of

instances, as well as with additional parameter settings, to further highlight the bene�ts and the

disadvantages of the VNS methodology for solving BIPs.

4.1 Instances

For the OptSAT we consider test instances created by Davoine et al. (2003) and da Silva et al.

(2020), with the largest instances having up to n = 3, 000 variables and m = 15, 000 constraints

(clauses). The instances typically have few non-zero coe�cients in each constraint, leading to

a sparse constraint matrix where the non-zero coe�cients are all either 1 or −1. It is typically

easy to �nd feasible solutions for these instances, but commercial mixed integer programming

solvers are currently unable to solve the most di�cult instances to proven optimality (da Silva

et al., 2020; Hvattum et al., 2012).

Cappanera and Trubian (2005) generated test instances for the MDMKP. These instances have

up to n = 500 variables, m = 30 knapsack constraints, and q = 30 covering constraints. A

particular aspect of these instances is that the constraint matrix is full, that is, aij is strictly

greater than 0 for all i and all j. For some of the instances, in particular those with many

constraints and few variables, commercial mixed integer programming solvers may struggle to

�nd any feasible solutions, as reported by Arntzen et al. (2006).

Test instances for the MMKP were presented by Khan et al. (2002) and Shojaei et al. (2013).

However, some of these instances contain non-integer objective function coe�cients, which we

converted into integers by multiplying all coe�cients by 10 until integrality was obtained. Al-

though some of the aijk coe�cients are zero, the part of the constraint matrix corresponding to

the knapsack constraints is almost full.

To tune parameters of the VND and GVNS, we select a training set of 15 instances, �ve from

each of the three problem classes used. For OptSAT, �ve instances generated by Davoine et al.

(2003) are selected: rn200m1000t10s0c25num0 (class 27), rn500m1000t25s0c25num0 (class 29),

rn500m2500t25s0c25num0 (class 31), rn500m2500t25s0c75num0 (class 49), and rn500m1000t25s0c0num0

16

(class 61). The �ve instances based on the MDMKP were created by Cappanera and Trubian

(2005), and labeled 100-5-1-0-0 (class 1), 500-5-5-0-0 (class 3), 250-10-10-1-0 (class 5), 100-30-

30-1-0 (class 7), and 500-30-1-0-0 (class 9). For the MMKP, the training set contains I3 and

INST15 provided by Khan et al. (2002) and INST23, INST27, and RTI11 provided by Shojaei

et al. (2013).

The evaluation of the �nal methods is done on a test set, which consists of 15 instances for

each of the three problems. The names of the selected instances, as well as the number of

variables, constraints, and non-zero elements of the constraint matrix, are given in Tables 2�4.

The instances are selected manually, with the aim of obtaining a diverse set of instances from

each problem class.

Table 2: Instances of OptSAT included in the test set.

Instance Name n m Non-zeros Source

01 lmhn1000m5000num1 1000 5000 15000 (da Silva et al., 2020)
02 lmhn1500m7500num1 1500 7500 22500 (da Silva et al., 2020)
03 qn500m2500t2s0c0num0 500 2500 5000 (Davoine et al., 2003)
04 qn500m5000t2s0c0num0 500 5000 10000 (Davoine et al., 2003)
05 qn1000m10000t2s0c0num0 1000 10000 20000 (Davoine et al., 2003)
06 rn200m1000t10s0c0num0 200 1000 10000 (Davoine et al., 2003)
07 rn200m1000t10s0c25num4 200 1000 10000 (Davoine et al., 2003)
08 rn200m1000t40s20c0num0 200 1000 40187 (Davoine et al., 2003)
09 rn500m1000t25s0c0num4 500 1000 25000 (Davoine et al., 2003)
10 rn500m1000t25s0c25num4 500 1000 25000 (Davoine et al., 2003)
11 rn500m1000t25s0c50num0 500 1000 25000 (Davoine et al., 2003)
12 rn500m1000t100s50c0num0 500 1000 99511 (Davoine et al., 2003)
13 rn500m1000t100s50c25num0 500 1000 100798 (Davoine et al., 2003)
14 rn500m2500t25s0c25num4 500 2500 62500 (Davoine et al., 2003)
15 rn500m2500t25s0c50num0 500 2500 62500 (Davoine et al., 2003)

4.2 Results on the training set

The purpose of the tests on the training set is two-fold. First, we want to understand how the

di�erent neighborhoods behave on di�erent types of instances. Second, we want to arrive at

parameter settings for a VND and a GVNS that can be evaluated on the test set. To this end,

a sequence of exploratory tests were executed. The �rst test included all neighborhoods Npq

listed in Table 1, with the goal of examining the relative usefulness of each neighborhood. Each

run was limited to 1,800 seconds, using α = 1 and best improvement local search, and statistics

17

Table 3: Instances of MDMKP included in the test set.

Instance Name n m Non-zeros Source

16 100-5-5-1-0 100 10 1000 (Cappanera and Trubian, 2005)
17 100-10-5-1-0 100 15 1500 (Cappanera and Trubian, 2005)
18 100-30-15-1-10 100 45 4500 (Cappanera and Trubian, 2005)
19 100-30-30-0-1 100 60 6000 (Cappanera and Trubian, 2005)
20 100-50-10-1 100 51 5100 (Cappanera and Trubian, 2005)
21 100-50-q-1 100 51 5100 (Cappanera and Trubian, 2005)
22 100-100-25-1 100 101 10100 (Cappanera and Trubian, 2005)
23 100-100-q-1 100 101 10100 (Cappanera and Trubian, 2005)
24 250-5-2-0-0 250 7 1750 (Cappanera and Trubian, 2005)
25 250-10-1-0-14 250 11 2750 (Cappanera and Trubian, 2005)
26 250-30-30-0-0 250 60 15000 (Cappanera and Trubian, 2005)
27 500-5-5-0-14 500 10 5000 (Cappanera and Trubian, 2005)
28 500-10-10-1-0 500 20 10000 (Cappanera and Trubian, 2005)
29 500-30-15-1-0 500 45 22500 (Cappanera and Trubian, 2005)
30 500-30-30-0-0 500 60 30000 (Cappanera and Trubian, 2005)

Table 4: Instances of MMKP included in the test set.

Instance Name n m Non-zeros Source

31 I5 250 35 2508 (Khan et al., 2002)
32 I9 2000 210 20009 (Khan et al., 2002)
33 I11 3000 310 30027 (Khan et al., 2002)
34 I13 4000 410 40050 (Khan et al., 2002)
35 INST01 500 60 5022 (Khan et al., 2002)
36 INST03 600 70 6024 (Khan et al., 2002)
37 INST07 800 90 8009 (Khan et al., 2002)
38 INST18 5600 290 61600 (Khan et al., 2002)
39 INST20 7000 360 77000 (Khan et al., 2002)
40 INST21 1076 210 10763 (Shojaei et al., 2013)
41 INST24 584 140 21675 (Shojaei et al., 2013)
42 INST28 1643 310 16439 (Shojaei et al., 2013)
43 RTI09 158 40 1568 (Shojaei et al., 2013)
44 RTI12 241 50 2448 (Shojaei et al., 2013)
45 RTI13 295 60 2954 (Shojaei et al., 2013)

18

regarding neighborhoods explored were collected during the runs.

Table 5 summarizes the behavior of the VND with all eight Npq neighborhoods for the three

di�erent problem classes. The table reports the number of times each neighborhood is explored,

the amount of time spent in each neighborhood, and the number of improvements found. Results

are given as averages over all training instances, and using relative measures. The same test was

also run using NP
pq and N

O
pq, with an almost identical relative performance observed. Looking at

the best solutions found, NO
pq performs better than Npq and N

P
pq, in that it either �nds a better

solution than the other two, or that the same best solution is found earlier. Certain neighborhoods

very rarely lead to improvements. These are therefore eliminated in subsequent tests: (p, q) ∈
{(2, 2), (3, 3), (4, 2), (4, 4)}. The remaining large neighborhoods, with p > 2 consume a large

portion of the running time, but leads to some improved solutions being found.

Subsequent tests therefore examined whether the large neighborhoods can be explored in an

e�cient manner by using a �rst improvement search, by exploring them only when the current

solution is feasible, or by exploring them only for instances with relatively few variables. Using

�rst improvement instead of best improvement for p > 2 leads to relatively less time spent in

these neighborhoods, while �nding relatively more improvements. Overall, the results found

after 1,800 seconds are better. Further testing revealed that it is better to skip the largest

neighborhoods, with p > 2, for large instances with n ≥ 600 or m ≥ 100. Attempting to further

reduce running times by only exploring the larger neighborhoods when the current solution is

feasible did not improve the results.

Table 5: Using the full set of neighborhoods Npq from Table 1, running each instance for 1,800
seconds, and reporting the relative number of times each neighborhood is explored (C), the
relative amount of time spent in each neighborhood (T), and the relative number of improvements
found by each neighborhood (I). Numbers are averages over �ve instances in each problem class.

MDMKP MMKP OptSAT
p q C [%] I [%] T [%] C [%] I [%] T [%] C [%] I [%] T [%]

1 1 58.0 64.6 0.0 83.8 90.8 0.0 77.2 82.8 0.0
2 0 20.7 26.8 0.1 7.4 6.7 0.1 13.0 13.5 0.1
2 2 5.4 0.0 0.1 2.2 0.0 0.1 3.2 0.0 0.0
3 1 5.4 1.7 3.5 2.2 0.5 9.4 3.2 2.7 5.1
3 3 4.5 0.0 3.0 1.8 0.0 14.5 1.3 0.0 0.5
4 0 4.5 7.0 54.1 1.8 1.9 30.9 1.3 1.1 51.8
4 2 0.7 0.0 21.3 0.4 0.0 19.0 0.4 0.0 30.1
4 4 0.7 0.0 17.8 0.4 0.0 25.9 0.4 0.0 12.3

19

Table 6: Using a set of neighborhoods Nr with r = 1, . . . , 8, running each instance for 1,800
seconds, and reporting the relative number of times each neighborhood is explored (C), the
relative amount of time spent in each neighborhood (T), and the relative number of improvements
found by each neighborhood (I). Numbers are averages over �ve instances in each problem class.

MDMKP MMKP OptSAT
r C [%] I [%] T [%] C [%] I [%] T [%] C [%] I [%] T [%]

1 67.2 97.6 68.6 59.7 93.5 60.5 64.8 98.0 65.4
2 5.8 1.6 5.7 7.8 2.6 8.3 5.9 1.3 5.1
3 4.8 0.4 4.7 6.6 1.4 6.8 5.1 0.3 4.7
4 4.6 0.2 4.4 5.9 0.8 5.8 4.9 0.1 4.7
5 4.5 0.1 4.3 5.4 0.6 5.2 4.9 0.1 4.8
6 4.4 0.0 4.2 5.1 0.5 4.8 4.8 0.1 5.0
7 4.4 0.0 4.1 4.9 0.4 4.4 4.8 0.0 5.1
8 4.3 0.0 4.1 4.6 0.3 4.1 4.8 0.0 5.2

For the second hierarchy of neighborhoods, Nr, Table 6 shows the relative performance of neigh-

borhoods with r = 1, . . . , 8. These sequential-�ip neighborhoods behave very di�erently from

the neighborhoods based exclusively on simultaneous �ips. The relative time used by each neigh-

borhood is almost identical to the number of times the neighborhood is explored. The relative

number of improvements found declines with increasing r, but this may partly be due to the

sequence in which the neighborhoods are explored. Applying the techniques of neighborhood

reduction is also found useful for this hierarchy, with NO
r performing better than Nr. The

neighborhoods are all explored relatively quickly, with similar complexity independent of r. The

results indicate that the marginal improvement of additional neighborhoods by increasing r is

quickly reduced. As for the large neighborhoods of NO
pq, results are improved when using �rst

improvement to explore the NO
r neighborhoods.

Having analyzed the two neighborhood types separately, the next experiments were designed to

�nd a joint set of neighborhoods that provides the best performance on the training instances.

The �nal settings were decided by a process of manually exploring di�erent alternatives and

evaluating their average performance on the instances of the training set. Table 7 shows the

�nal list of neighborhoods used in the VND, which includes further restrictions on the use of

neighborhoods based on the size of the instance solved. In particular, the NO
pq neighborhoods

with (p, q) = (3, 1) or (4, 0) are not used when n ≥ 600 or m ≥ 100.

For the GVNS, the same settings are used for the VND, but in addition a set of neighborhoods

for the shaking must be determined. Two options were tested, either using Nr for shaking, or

20

Table 7: Final settings for neighborhoods used in the VND.

k type size exploration strategy requirements

1 NO
pq p = 1, q = 1 best improvement none

2 NO
pq p = 2, q = 0 best improvement none

3 NO
r r = 1 �rst improvement none

4 NO
r r = 2 �rst improvement none

5 NO
pq p = 3, q = 1 �rst improvement n < 600, m < 100

6 NO
pq p = 4, q = 0 �rst improvement n < 600, m < 100

using
⋃p

q=0Np. The latter, being the same as Npq but without any restrictions on q, turned out

to be the better choice, with kMAX = 16 di�erent neighborhoods from p ∈ {5, 6, . . . , 20}. One

further modi�cation of the GVNS was made, wherein the VND used as a subroutine is halted

immediately if the current solution becomes equal to the solution before shaking. For both the

VND and the GVNS, the solution evaluation function A(x) = V (x) + αW (x) is found to work

well with α = 1, although the performance is not sensitive to the choice of α.

4.3 Results on the test set

This section presents results on the test set by using CPLEX 12.10, LocalSolver 10.0, BILS, the

VND, and the GVNS. Each instance is solved using each method and two di�erent time limits.

Short runs are considered with a one minute time limit, and long runs are allowed a time limit of

one hour. For the short runs, all methods except CPLEX are run 11 times and the median result

is reported for each instance. When reporting the results, the objective function is reported

relative to the best value found within all results obtained for each instance. When a method

fails to �nd any feasible solutions within the time limit, the result is recorded as minus in�nity.

Results are grouped by the type of problem solved (OptSAT, MDMKP, MMKP), and for each

group we report the minimum, median, and maximum performance over the 15 instances in the

group, as well as the interquartile range (IQR).

The results for OptSAT are given in Table 8 and Table 9. For these instances, LocalSolver

performs on average better than CPLEX, while the performance of GVNS is similar to that of the

VND for the long runs. Comparing LocalSolver and GVNS is not entirely straightforward: there

are three instances where the performance of GVNS and VND is relatively poor. These instances

(01, 02, and 05) have the highest number of constraints among the OptSAT instances in the test

set. Without these instances, the performance of GVNS would be dominating LocalSolver, as

21

seen when comparing the median performance over the 15 instances. The simple BILS benchmark

method is the worst method on all instances, but is relatively close to the best solutions on some

instances.

Table 8: Results for short runs (60 seconds) for instances of the OptSAT, reporting the objective
function values relative to the best objective function value found in any test run. The best
performances for each instance are highlighted in bold. CPLEX is run only once, whereas for
the other methods the median result of 11 individual runs is given.

Instance CPLEX LocalSolver BILS VND GVNS

01 0.910 0.966 0.867 0.941 0.946
02 0.933 0.954 0.865 0.939 0.945
03 0.975 0.991 0.930 0.978 0.978
04 0.967 0.975 0.900 0.970 0.977

05 0.974 0.974 0.863 0.947 0.941
06 0.996 0.995 0.956 0.995 1.000

07 0.994 0.992 0.969 0.996 1.000

08 1.000 0.997 0.996 1.000 1.000

09 0.997 0.995 0.988 0.998 0.998

10 0.999 0.997 0.992 0.998 0.999

11 0.998 0.998 0.992 0.999 0.999

12 0.999 0.999 0.998 1.000 1.000

13 1.000 0.999 0.998 1.000 1.000

14 0.996 0.990 0.986 0.998 0.999

15 0.995 0.991 0.987 0.997 0.998

Min 0.910 0.954 0.863 0.939 0.941
Median 0.996 0.992 0.986 0.997 0.999

Max 1.000 0.999 0.998 1.000 1.000

IQR 0.024 0.015 0.077 0.024 0.023

Table 10 and Table 11 provide the results for the 15 MDMKP instances in the test set. The

performance of CPLEX is noteworthy, as it �nds the best solution on all instances except two

in the long runs. In the two cases where CPLEX does not perform well, there is one instance

where no feasible solution is found, and one instance where the solution found is poor. Thus,

CPLEX performs best on instances with 250 or more variables, whereas the best performance

on the instances with 100 variables is by the GVNS, followed by the VND. Instance 19, where

both CPLEX and LocalSolver has a poor performance, comes from a class of 30 instances with

100 variables and 60 constraints, and Section 4.4 contains additional results for these instances.

BILS again has the worst performance on all the instances, and is relatively far away from the

best found solutions on all instances.

22

Table 9: Results for long runs (3600 seconds) for instances of the OptSAT, reporting the objective
function values relative to the best objective function value found in any test run. The best
performances for each instance are highlighted in bold. Each method is run only once.

Instance CPLEX LocalSolver BILS VND GVNS

01 0.980 1.000 0.868 0.954 0.955
02 0.984 1.000 0.869 0.955 0.950
03 1.000 1.000 0.930 0.992 0.992
04 0.998 1.000 0.900 0.998 1.000
05 1.000 0.992 0.860 0.969 0.964
06 0.998 1.000 0.961 1.000 1.000

07 1.000 0.998 0.962 1.000 1.000

08 1.000 1.000 0.996 1.000 1.000

09 1.000 0.997 0.988 0.999 1.000

10 0.999 0.998 0.992 1.000 1.000

11 0.999 0.999 0.992 1.000 1.000

12 1.000 1.000 0.999 1.000 1.000

13 1.000 1.000 0.999 1.000 1.000

14 0.998 0.998 0.986 1.000 1.000

15 0.999 0.997 0.988 0.999 1.000

Min 0.980 0.992 0.860 0.954 0.950
Median 0.999 1.000 0.986 1.000 1.000

Max 1.000 1.000 0.999 1.000 1.000

IQR 0.002 0.002 0.077 0.005 0.004

23

Table 10: Results for short runs (60 seconds) for instances of the MDMKP, reporting the objective
function values relative to the best objective function value found in any test run. The best
performances for each instance are highlighted in bold. CPLEX is run only once, whereas for
the other methods the median result of 11 individual runs is given.

Instance CPLEX LocalSolver BILS VND GVNS

16 1.000 1.000 0.805 0.995 0.990
17 1.000 0.990 0.788 0.990 0.991
18 0.968 0.881 −∞ 0.947 0.955
19 −∞ 0.898 −∞ 0.945 0.959

20 1.000 1.000 0.862 1.000 1.000

21 1.000 1.000 0.807 1.000 1.000

22 1.000 1.000 0.921 1.000 1.000

23 1.000 0.965 0.852 0.998 0.998
24 1.000 1.000 0.882 0.993 0.993
25 1.000 1.000 0.916 0.992 0.992
26 0.958 0.934 0.762 0.956 0.965

27 1.000 1.000 0.905 0.996 0.997
28 0.996 0.983 0.754 0.939 0.943
29 0.978 0.919 0.651 0.912 0.908
30 0.946 0.945 0.792 0.944 0.945

Min −∞ 0.881 −∞ 0.912 0.908
Median 1.000 0.990 0.805 0.992 0.991
Max 1.000 1.000 0.921 1.000 1.000

IQR 0.027 0.060 0.114 0.051 0.041

24

Table 11: Results for long runs (3600 seconds) for instances of the MDMKP, reporting the
objective function values relative to the best objective function value found in any test run. The
best performances for each instance are highlighted in bold. Each method is run only once.

Instance CPLEX LocalSolver BILS VND GVNS

16 1.000 1.000 0.805 1.000 1.000

17 1.000 1.000 0.788 1.000 1.000

18 0.975 0.974 −∞ 0.977 1.000

19 −∞ 0.902 −∞ 0.988 1.000

20 1.000 1.000 0.862 1.000 1.000

21 1.000 1.000 0.807 1.000 1.000

22 1.000 1.000 0.921 1.000 1.000

23 1.000 0.966 0.852 1.000 1.000

24 1.000 1.000 0.882 0.997 0.997
25 1.000 1.000 0.916 0.994 0.997
26 1.000 0.951 0.780 0.988 0.997
27 1.000 1.000 0.905 0.998 0.999
28 1.000 0.990 0.786 0.977 0.986
29 1.000 0.938 0.663 0.962 0.981
30 1.000 0.983 0.800 0.992 0.998

Min −∞ 0.902 −∞ 0.962 0.981
Median 1.000 1.000 0.805 0.997 1.000

Max 1.000 1.000 0.921 1.000 1.000

IQR 0.000 0.030 0.089 0.012 0.003

25

Finally, the results for MMKP are provided in Table 12 and Table 13. For these instances,

CPLEX provides the best performance, followed by LocalSolver. The GVNS performs better

than the VND, but is only able to �nd the best solution on two of the 15 instances. The BILS

benchmark performs poorly on most of the MMKP instances. For one instance, both GVNS and

VND fails to �nd any feasible solution. Instance 41 is not particularly large, with 584 variables

and 140 constraints, compared to the other instances of this class, and the performance on this

instance is examined further in Section 4.4.

Table 12: Results for short runs (60 seconds) for instances of the MMKP, reporting the objective
function values relative to the best objective function value found in any test run. The best
performances for each instance are highlighted in bold. CPLEX is run only once, whereas for
the other methods the median result of 11 individual runs is given.

Instance CPLEX LocalSolver BILS VND GVNS

31 1.000 1.000 0.580 1.000 1.000

32 1.000 0.999 0.715 0.968 0.974
33 1.000 0.999 0.714 0.965 0.971
34 1.000 1.000 0.712 0.964 0.968
35 0.998 0.999 0.871 0.955 0.962
36 0.999 0.999 0.930 0.962 0.969
37 0.998 0.998 0.877 0.960 0.971
38 1.000 1.000 0.603 0.940 0.952
39 1.000 1.000 0.597 0.941 0.944
40 1.000 0.999 0.903 0.972 0.977
41 0.997 0.978 −∞ −∞ −∞
42 1.000 0.999 0.875 0.971 0.977
43 1.000 1.000 0.728 1.000 1.000
44 1.000 0.998 0.931 0.956 0.961
45 1.000 1.000 0.665 0.948 0.968

Min 0.997 0.978 −∞ −∞ −∞
Median 1.000 0.999 0.715 0.962 0.969
Max 1.000 1.000 0.931 1.000 1.000

IQR 0.001 0.001 0.243 0.017 0.014

While the presented results focus on the primal bounds obtained by the methods, both CPLEX

and LocalSolver also provide dual bounds. Given su�cient running time, these methods can

provide proofs of optimality. For long runs, CPLEX is able to prove that an optimal solution

is found on 12 of the 45 instances tested: 16, 17, 20�24, 31, 34, and 43�45, while LocalSolver is

able to prove optimality for eight of these instances. With a short time limit, the methods are

able to provide proofs of optimality for seven and three of the instances, respectively.

26

Table 13: Results for long runs (3600 seconds) for instances of the MMKP, reporting the objective
function values relative to the best objective function value found in any test run. The best
performances for each instance are highlighted in bold. Each method is run only once.

Instance CPLEX LocalSolver BILS VND GVNS

31 1.000 1.000 0.593 1.000 1.000

32 1.000 1.000 0.726 0.970 0.978
33 1.000 1.000 0.720 0.969 0.977
34 1.000 1.000 0.717 0.968 0.974
35 1.000 0.999 0.881 0.969 0.978
36 1.000 0.999 0.934 0.967 0.973
37 1.000 1.000 0.879 0.964 0.977
38 1.000 1.000 0.607 0.945 0.975
39 1.000 1.000 0.602 0.945 0.977
40 1.000 1.000 0.911 0.974 0.982
41 1.000 0.980 −∞ −∞ −∞
42 1.000 1.000 0.883 0.973 0.981
43 1.000 1.000 0.728 1.000 1.000

44 1.000 1.000 0.947 0.974 0.985
45 1.000 1.000 0.675 0.987 0.994

Min 1.000 0.980 −∞ −∞ −∞
Median 1.000 1.000 0.726 0.969 0.978
Max 1.000 1.000 0.947 1.000 1.000

IQR 0.000 0.000 0.241 0.008 0.008

27

In summary, the results on the test set are somewhat mixed. Compared to the commercially

available solvers, CPLEX and LocalSolver, the new VNS methods perform well on certain types

of instances, and less well on others. For OptSAT, GVNS is arguably producing the best results,

followed by LocalSolver. However, on OptSAT instances with many constraints, this result is

reversed. For MDMKP, GVNS is the best method on instances with fewer variables, whereas

CPLEX is best on instances with more variables. On the MMKP, CPLEX is the best method,

followed by LocalSolver. The heuristic commercial solver, LocalSolver, is the only method to �nd

feasible solutions to all the instances in the test set, but additional tests reported in Section 4.4

provide a more nuanced conclusion.

Grouping the 45 instances in the test set together and sorting them by the number of variables

leads to some general conclusions regarding the GVNS. When considering the long runs of 60

minutes, GVNS �nds the best solution to all instances with n ≤ 200. No other method is able

to do this, as CPLEX and LocalSolver fail on three instances (06, 18, and 19) and VND on two

(18 and 19). On the other hand, GVNS does not �nd the best solution for any instance with

n > 500. Sorting the instances by the number of constraints or non-zeros does not lead to any

similar patterns: GVNS �nds the best solution for the two instances with the most non-zeros

and the three instances with the fewest. In other words, it fails to �nd the best solution for

the instances with the third most and the fourth fewest non-zeros, among the 45 instances. In

addition, GVNS fails to �nd the best solution for both the instances with most (m = 10, 000)

and the instances with fewest (m = 7) constraints.

We end the comparison of the di�erent methods by testing whether the di�erences in their

performances are statistically signi�cant. To this end we apply a sign-test, where we count the

number of instances for which the performance is strictly better or strictly worse for each pair

of methods, while ignoring instances where the performances are equal. The null-hypothesis is

that there is no di�erence in performance, which leads to an assumption that the distribution of

better and worse results is a binomial distribution with an equal probability for each outcome. In

these tests we consider results from all 45 instances in the test set and note that for comparisons

based on short runs, the median result for each instance is used, with all methods being run 11

times, except for CPLEX which is only run once.

Table 14 and Table 15 shows results from the sign tests on short and long runs, respectively.

Methods highlighted in bold are signi�cantly better than the opposing method when using a

signi�cance level of 0.05 and a two-sided probability. It is seen that CPLEX is signi�cantly

better than any other method, except the GVNS on short runs. LocalSolver is not signi�cantly

better than VND or GVNS. GVNS is signi�cantly better than VND on both short and long runs,

28

and all other methods are better than BILS for both time limits.

Table 14: Statistical comparison of performances on short runs.

Method 1 Method 2 Method 1 wins Method 2 wins P-value

CPLEX LocalSolver 28 7 0.001
CPLEX BILS 44 0 <0.001
CPLEX VND 27 13 0.038
CPLEX GVNS 24 16 0.268
LocalSolver BILS 45 0 <0.001
LocalSolver VND 25 14 0.108
LocalSolver GVNS 24 16 0.268
BILS VND 0 44 <0.001
BILS GVNS 0 44 <0.001
VND GVNS 4 31 <0.001

Table 15: Statistical comparison of performances on long runs.

Method 1 Method 2 Method 1 wins Method 2 wins P-value

CPLEX LocalSolver 27 5 <0.001
CPLEX BILS 44 0 <0.001
CPLEX VND 26 7 0.001
CPLEX GVNS 24 9 0.014
LocalSolver BILS 45 0 <0.001
LocalSolver VND 22 15 0.324
LocalSolver GVNS 22 15 0.324
BILS VND 0 44 <0.001
BILS GVNS 0 44 <0.001
VND GVNS 4 25 <0.001

4.4 Additional results

Having observed the performance of the methods on the test instances, additional experiments

were conducted to shed further light on the performance of the GVNS and the VND. First, we

observed that CPLEX and LocalSolver performed poorly on one MDMKP instance with 100

variables, 30 knapsack constraints, and 30 cover constraints. In the original set of instances

(Cappanera and Trubian, 2005), a set of 30 randomly generated instances of the same size are

present. Table 16 shows the results for all of these 30 instances, out of which 100-30-30-1-0 was

included in the training set and 100-30-30-0-1 in the test set.

29

The results indicate that the performance of GVNS and VND on instance 19 in the test set was

not happenstance. The GVNS �nds the best solution on 25 of the 30 instances, and the VND

�nds feasible solutions to all of the 30 instances. In comparison, CPLEX fails to �nd any feasible

solution on 22 out of 30 instances, while LocalSolver fails to �nd feasible solutions on four of the

instances. In addition, when LocalSolver does �nd feasible solutions, they are typically of much

worse quality than the solutions found by GVNS and VND. The results of BILS are omitted

from the table: running 11 times with di�erent random seeds for the short time limit and once

for the long time limit, the BILS was not able to �nd any feasible solution to any of the instances

in any of the runs.

Second, the performance of the VND and the GVNS on the MMKP instances is worthy of further

investigation. On instance 41, both of these methods fail to �nd any feasible solution after a full

60 minutes of running time. When starting from a random solution, the VND navigates towards

a solution where the knapsack constraints are satis�ed, but a number of the set partitioning

constraints of the form
∑

j∈Gi
xij = 1 are violated, with the left hand side being equal to 0.

Changing any of the variables on the left hand side of these violated constraints from 0 to 1 leads

to the violation of several knapsack constraints. Therefore, the moves considered are unable to

�nd a path to a feasible solution. In addition, for those instances where a feasible solution is

found, the VND does not easily �nd an improved feasible solution.

In an attempt to improve the performance of the GVNS on the MMKP, we introduced an

alternative evaluation function, where each constraint has a separate weight. That is, with

wi ≥ 1 being the weight of constraint i = 1, . . . ,m, the weighted sum of constraint violations

is V (x) =
∑

i∈M(x)wi(bi −
∑n

j=1 aijxj)/ãi +
∑

i∈M(x)wi(
∑n

j=1 aijxj − bi)/ãi, and the weighted

number of violated constraints is W (x) =
∑

i∈M(x)wi +
∑

i∈M(x)wi. A preprocessing step was

used to identify set partitioning constraints and to set a higher weight for these, while keeping

the weight equal to 1 for all other constraints.

If the weight of the set partition constraints is set su�ciently high, e.g., wi = 10, the VND

takes a di�erent path, and more easily ends up in a feasible solution. For example, on instance

41, this new weighted version �nds a solution with a relative objective function value of 0.983

after 60 minutes (and 0.979 after 60 seconds). However, even though this modi�cation leads to

feasible solutions on all instances in the test set, the quality of the feasible solution found is still

somewhat arbitrary, and the median performance of the weighted version of GVNS becomes 0.974

and 0.981, on short and long runs, respectively, compared to 0.969 and 0.978 for the unweighted

version.

30

Table 16: Results for additional MDMKP instances, reporting the objective function values
relative to the best objective function value found among the four methods, after respectively
60 seconds (Short) and 3600 seconds (Long). For short runs, the median result of 11 runs is
reported for LocalSolver, VND, and GVNS. The best performances for each instance and time
limit are highlighted in bold. Instance names are abbreviated, and full names can be obtained
by adding the pre�x �100-30-30�.

Short (60 seconds) Long (3600 seconds)

Instance CPLEX LocalSolver VND GVNS CPLEX LocalSolver VND GVNS

0-0 −∞ 0.820 0.934 0.974 −∞ 0.705 1.000 1.000

0-1 −∞ 0.898 0.945 0.959 −∞ 0.902 0.988 1.000

0-2 −∞ −∞ 0.883 0.944 −∞ 0.858 1.000 1.000

0-3 −∞ 0.838 0.911 0.954 −∞ 0.932 0.985 1.000

0-4 −∞ −∞ −∞ −∞ −∞ −∞ 0.950 1.000

0-5 −∞ 0.941 0.950 0.977 −∞ 0.981 0.979 1.000

0-6 0.951 0.927 0.957 0.975 0.983 0.913 0.985 1.000

0-7 0.953 0.939 0.972 0.984 0.987 0.980 0.993 1.000

0-8 −∞ 0.880 0.943 0.962 −∞ 0.856 0.971 0.987

0-9 −∞ 0.931 0.962 0.980 1.000 0.889 0.986 0.994
0-10 −∞ −∞ −∞ −∞ −∞ −∞ 1.000 1.000

0-11 −∞ 0.956 0.977 0.989 −∞ 0.979 0.997 1.000

0-12 −∞ 0.934 0.957 0.969 −∞ 0.963 0.971 0.979

0-13 0.971 0.964 0.981 0.992 1.000 0.980 1.000 1.000

0-14 −∞ 0.954 0.969 0.979 −∞ 0.962 0.988 1.000

1-0 −∞ 0.559 0.929 0.966 −∞ 0.507 1.000 1.000

1-1 −∞ −∞ 0.734 0.735 −∞ 0.695 0.945 1.000

1-2 −∞ −∞ 0.487 0.612 −∞ 0.738 0.988 1.000

1-3 −∞ 0.401 0.734 0.794 −∞ 0.542 0.925 1.000

1-4 −∞ −∞ −∞ −∞ −∞ 0.465 1.000 1.000

1-5 −∞ 0.757 0.863 0.938 −∞ 0.805 0.990 1.000

1-6 0.788 0.714 0.823 0.879 0.916 0.917 0.883 1.000

1-7 0.652 0.809 0.858 0.929 0.991 0.944 0.983 0.988

1-8 −∞ 0.611 0.795 0.893 −∞ 0.589 0.955 1.000

1-9 −∞ 0.795 0.830 0.907 1.000 0.933 0.951 0.995
1-10 −∞ −∞ −∞ −∞ −∞ −∞ 1.000 −∞
1-11 −∞ 0.821 0.939 0.958 −∞ 0.754 0.998 1.000

1-12 −∞ 0.720 0.827 0.899 −∞ 0.907 0.942 1.000

1-13 0.834 0.801 0.868 0.933 0.991 0.991 0.965 1.000

1-14 −∞ −∞ 0.868 0.886 −∞ 0.900 0.951 1.000

Min −∞ −∞ −∞ −∞ −∞ −∞ 0.883 −∞
Median −∞ 0.798 0.875 0.941 −∞ 0.894 0.986 1.000

Max 0.971 0.964 0.981 0.992 1.000 0.991 1.000 1.000

IQR 0.000 ∞ 0.147 0.092 ∞ 0.244 0.040 0.000

31

5 Concluding remarks

Binary integer programming (BIP) forms an important class of optimization problems, encom-

passing many more specialized structures, such as knapsack problems, arising when modelling

real world applications. There have been few attempts at developing heuristics targeting the

BIP. This paper investigated whether variable neighborhood search (VNS) is a viable technique

for creating e�ective heuristic solvers, based on three research questions. In particular, a vari-

able neighborhood descent (VND) and a general variable neighborhood descent (GVNS) were

developed in this process.

The �rst research question posed was whether a useful and meaningful hierarchy of neighborhoods

can be devised for the BIP. The premise was that these neighborhoods should be explored

systematically without relying on external mixed integer programming solvers. Two hierarchies

were suggested, one based on simultaneously �ipping p variables such that the sum of the variables

changed by q or −q, and the other based on �rst simultaneously �ipping r consecutive variables

from a sorted list, and then sequentially �ipping additional variables following the same sorted

list. Both types of neighborhoods were useful for solving BIP, and the best version of VND

obtained contained a mix of neighborhoods from the two hierarchies.

The second research question pertained to a set of strategies for reducing the size of the explored

neighborhoods. It was found to be e�cient to �ip several variables only when pairs of the

variables appear in the same constraint but with opposite e�ects on the current value of the left

hand side. Larger neighborhoods should be explored using a �rst improvement strategy, rather

than a best improvement strategy, while the opposite is true for the smaller neighborhoods. The

very largest neighborhoods should not be explored when the number of variables or constraints in

the problem is too large. Limiting the exploration of any neighborhood to only improve feasible

solutions did not have any positive e�ect on the performance of the search as a whole.

Finally, the third research question asked whether the obtained solutions compare well with

primal bounds obtained by commercial software available for the BIP. The results were mixed,

as the GVNS and the VND outperforms the two commercially available solvers CPLEX and

LocalSolver on some instances, while the opposite holds for other instances. GVNS turns out to

work particularly well for relatively small instances, with n ≤ 200 variables, as well as for tightly

constrained instances based on the multidemand multidimensional knapsack problem.

Hence, the main conclusion is that heuristics based on VNS for BIP may be particularly suitable

as components of a heuristic that is based on variable �xing, so that subproblems with relatively

32

few variables are addressed by a VND or a GVNS. This can happen both in evolutionary algo-

rithms, such as the one proposed by da Silva et al. (2020) for the optimum satis�ability problem,

or when applying the core concept as outlined by Huston et al. (2008). Future research is needed

to determine whether VNS can be successfully used as a subsolver in such circumstances. We

also suggest for future research to test if the performance of VNS is dependent on the initial

solution, and whether construction heuristics can be used instead of generating a random initial

solution. Finally, we would like to investigate whether the random shaking step of the GVNS

can be replaced by a systematic movement based on adaptive memory structures.

Acknowledgements

The authors wish to thank three anonymous reviewers for their helpful comments and suggestions.

References

S. Al-Shihabi. A novel core-based optimization framework for binary integer programs-the mul-

tidemand multidimensional knapsack problem as a test problem. Operations Research Per-

spectives, 8:100182, 2021.

H. Arntzen, L.M. Hvattum, and A. Løkketangen. Adaptive memory search for multidemand mul-

tidimensional knapsack problems. Computers and Operations Research, 33:2508�2525, 2006.

E. Balas. An additive algorithm for solving linear programs with zero-one variables. Operations

Research, 13(4):517�546, 1965.

T. Benoist, B. Estellon, F. Gardi, R. Megel, and K. Nouioua. LocalSolver 1.x: a black box

local-search solver for 0-1 programming. 4OR - A Quarterly Journal of Operations Research,

9:299, 2011.

D. Bertsimas, D.A. Iancu, and D. Katz. A new local search algorithm for binary optimization.

INFORMS Journal on Computing, 25(2):208�221, 2013.

S. Boulmier. Optimisation globale avec LocalSolver (in French). Phd dissertation, L'Université

Grenoble Alpes, Grenoble, France, 2020.

P. Cappanera and M. Trubian. A local-search-based heuristic for the demand-constrained mul-

tidimensional knapsack problem. INFORMS Journal of Computing, 17:82�98, 2005.

33

CPLEX, 2020. https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.10.0/.

R.F. da Silva, L.M. Hvattum, and F. Glover. Combining solutions of the optimum satis�ability

problem using evolutionary tunneling. MENDEL, 26:23�29, 2020.

T. Davoine, P.L. Hammer, and B. Vizvári. A heuristic for boolean optimization problems. Journal

of Heuristics, 9:229�247, 2003.

F. Glover, G. Kochenberger, W. Xie, and J. Luo. Diversi�cation methods for zero-one optimiza-

tion. Journal of Heuristics, 25:643�671, 2019.

J. Glover, V. Quan, and S. Zolfaghari. Some new perspectives for solving 0�1 integer pro-

gramming problems using Balas method. Computational Management Science, 2021. doi:

https://doi.org/10.1007/s10287-021-00389-6. In press.

F. Gortázar, A. Duarte, M. Laguna, and R. Martí. Black box scatter search for general classes

of binary optimization problems. Computers and Operations Research, 37:1977�1986, 2010.

S. Hana�, J. Lazi¢, N. Mladenovi¢, and C. Wilbaut. Variable neighborhood decomposition

search with bounding for multidimensional knapsack problem. In Proccedings of the 13th IFAC

Symposium on Information Control Problems in Manufacturing, volume 42, pages 2018�2022,

Moscow, Russia, 2009.

P. Hansen, N. Mladenovi¢, and D. Uro²evi¢. Variable neighborhood search and local branching.

Computers and Operations Research, 33:335�350, 2006.

P. Hansen, N. Mladenovi¢, J. Brimberg, and J.A. Moreno Pérez. Variable neighborhood search.

In M. Gendreau and J.-Y. Potvin, editors, Handbook of Metaheuristics, volume 146 of Inter-

national Series in Operations Research & Management Science, pages 61�86. Springer, New

York, NY, USA, 2010.

S. Huston, J. Puchinger, and P. Stuckey. The core concept for 0/1 integer programming. In Four-

teenth Computing: The Australasian Theory Symposium (CATS2008), pages hal�01299754,

Wollongong, Australia, January 2008.

L.M. Hvattum, A. Løkketangen, and F. Glover. Comparisons of commercial MIP solvers and an

adaptive memory (tabu search) procedure for a class of 0�1 integer programming problems.

Algorithmic Operations Research, 7:13�21, 2012.

S. Khan, K.F. Li, E.G. Manning, and M.M. Akbar. Solving the knapsack problem for adaptive

multimedia system. Studia Informatica Universalis, 2(1):157�178, 2002.

34

T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R.E. Bixby, E. Danna, G. Gam-

rath, A.M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D.E. Ste�y,

and K. Wolter. MIPLIB 2010 - mixed integer programming library version 5. Mathematical

Programming Computation, 3:103�163, 2011.

X. Lai, J.-K. Hao, and D. Yue. Two-stage solution-based tabu search for the multidemand

multidimensional knapsack problem. European Journal of Operational Research, 274:35�48,

2019.

J. Puchinger and G.R. Raidl. Bringing order into the neighborhoods: relaxation guided variable

neighborhood search. Journal of Heuristics, 14:457�472, 2008.

C. Rego, T. James, and F. Glover. An ejection chain algorithm for the quadratic assignment

problem. INFORMS Journal on Computing, 16(2):133�151, 2004.

H. Shojaei, T. Basten, M.C.W. Geilen, and A. Davoodi. A fast and scalable multi-dimensional

multiple-choice knapsack heuristic. ACM Transactions on Design Automation of Electronic

Systems, 18(4):Article 51, 32 pages, October 2013.

A.C. Trapp and R.A. Konrad. Finding diverse optima and near-optima to binary integer pro-

grams. IIE Transactions, 47(11):1300�1312, 2015.

N. Turajli¢ and I. Dragovi¢. A hybrid metaheuristic based on variable neighborhood search and

tabu search for the web service selection problem. Electronic Notes in Discrete Mathematics,

39:145�152, 2012.

35

