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Abstract: Code smells are the result of not following software engineering principles during software
development, especially in the design and coding phase. It leads to low maintainability. To evaluate
the quality of software and its maintainability, code smell detection can be helpful. Many machine
learning algorithms are being used to detect code smells. In this study, we applied five ensemble
machine learning and two deep learning algorithms to detect code smells. Four code smell datasets
were analyzed: the Data class, the God class, the Feature-envy, and the Long-method datasets. In
previous works, machine learning and stacking ensemble learning algorithms were applied to this
dataset and the results found were acceptable, but there is scope of improvement. A class balancing
technique (SMOTE) was applied to handle the class imbalance problem in the datasets. The Chi-
square feature extraction technique was applied to select the more relevant features in each dataset.
All five algorithms obtained the highest accuracy—100% for the Long-method dataset with the
different selected sets of metrics, and the poorest accuracy, 91.45%, was achieved by the Max voting
method for the Feature-envy dataset for the selected twelve sets of metrics.

Keywords: code smell; code smell detection; ensemble method; deep learning; Chi-square feature
extraction technique; SMOTE class balancing technique

1. Introduction

Code smells indicate poor design and implementation options that may reduce code
understandability and probably enhance change requirements and fault proneness [1].
Thus, a code smell is a characteristic in a program’s source code that indicates a bigger
issue. Code smells happen when code is not written according toessential principles [2].
Software engineers face a difficult task in detecting code smells. W. Kessentini et al. [3] and
Fontana et al. [4,5] discussed various techniques and tools to identify various code smells.
Every approach has a different outcome [6,7].

Because of the large size and high complexity of the software, the quality is declin-
ing [8]. Designers must follow the development cycle, as well as specific and non-specific
requirements, to ensure software reliability [9]. Commonly, developers have focused only
on functional requirements, whereas non-functional requirements, such as conciseness,
reliability, progression, manageability, and renewability, are ignored [10]. The absence
of non-functional requirements tends towards degradation of software reliability, which
increases the maintainability cost and software’s complexity. Fowler et al. [11] describe how
to transform poorly built code in the exemplary execution using a refactoring paradigm.

Various experiments have been carried out to investigate the effects of code smells on
software, and unwanted consequences of these have been found [12–14]. Software restruc-
turing is generally required to eliminate them. Olbrich et al. [15], Khomh et al. [16], and
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Deligiannis et al. [17] analyzed the impact of code smells upon software design by studying
the number of modifications required, in future, within the software. They also checked
whether classes affected with code smells need to be altered more frequently and need too
much looking after. Li, W et al. [18] considered the influence of bad smells on class failure
possibility in the future. Their research found that affectedsoftware modules that have code
smells have a greater rate of failure in comparison with other modules. Castillo et al. [19]
investigated the negative impact of the God class (GC) on utilization and discovered that
removing the GC reduces the cyclic complexity of the software. Gogullothu et al. [20]
worked on multi-label code smell datasets. Tomasz et al. [21] carried out a systematic
literature review to see how far there is reproducible research on code smell detection.

This research focuses on detecting code smells using ensemble machine learning and
deep learning approaches with the software metrics. Metrics have an important role in
code smell detection by determining the source code’s characteristics.

1.1. Motivation

In the literature [7,20–22], many machine learning techniques (MLTs) and feature
selection approaches (FSA) have been applied to code smell datasets for detecting code
smells [7]. Moreover, the results of most of these techniques are found to be good [20,22,23].
However, in most of the papers [7,20–22] the authors do not mention the effect of different
subsets of metrics on the performance accuracy for detecting the code smells. To fill this
gap, in this paper we extracted different subsets of metrics (e.g., eight metrics, nine metrics,
ten metrics, eleven metrics, twelve metrics, and the whole set of metrics) with the help of
Chi-square FSA; the ensemble machine learning and deep learning algorithms were then
applied to each set of metrics to find their effects on the model’s accuracy.

1.2. Contributions

This study introduces a code smell detection technique based on ensemble machine
learning and deep learning approaches. We considered four code smell datasets: God Class
(GC), Data Class (DC), Long-method (LM), and Feature-envy (FE) from Fontana et al. [7].
The GC and DC datasets are the class-level datasets, while FE and LM datasets are the
method-level datasets. Five ensemble learning algorithms (Adaboost, Bagging, Max voting,
Gradient boosting, and XGboosting) and two deep learning algorithms (Artificial neural
network, and Convolutional neural network) were implemented on these datasets.

Seven performance measures: sensitivity, accuracy, positive predictive value (PPV), F-
measure, area-under-curve of receiver-operating-characteristic curve score (AUC_ROC_Score),
Matthews correlation coefficient (MCC), and the Cohen_Kappa_scorewere calculated to
evaluate the performance of ensemble methods.

1.3. Research Questions

This study has the following research questions.

RQ1. Which ensemble and deep learning algorithm is better/best for detecting the code smells?

Motivation. Alazba, A et al. [22] applied machine learning and stacking ensemble
algorithms, and Tushar Sharma et al. [24] applied deep learning for code smell detection.
They found that the stacking ensemble and deep learning algorithms obtained better
performance accuracy than the MLTs. For that reason, we examine the impact of other
ensemble learning and deep learning algorithms to detect code smells.

RQ2. Does a set of metrics chosen by the Chi-square FSA improve the performance of code
smell detection?

Motivation. Mohammad Y. Mhawish et al. [25,26], Pushpalatha M.N. [27], and Dewan-
gan et al. [23] presented the impact of different FSAs on the performance measurements.
They found that using the FSA improved the accuracy, although these authors did not
examine the effect of various subsets of metrics on the algorithms’ performance. Therefore,



Appl. Sci. 2022, 12, 10321 3 of 22

in this study, the Chi-square FSA is applied to improve the algorithms’ performance and
identify which subset of metrics plays a better role in the code smell detection procedure.

RQ3. Does the SMOTE class balancing technique improve the performance of code
smell detection?

Motivation. Sushant Kumar Pandey et al. [28] applied a random sampling method to
solve the class imbalance issue. They found an improvement in the results with the applied
random sampling method. SofienBoutaib et al. [29] applied an ADIODE method to identify
the code smell with class labels. They found good results. It motivated us to apply the
SMOTE method to find the impact of the class imbalance problem in our study.

The outline of the paper is as follows: Section 2 describes the literature review.
Section 3 describes the used datasets and research framework. Section 4 depicts the imple-
mentation work. Section 5 discusses the result analysis and threats to validity. Section 6
concludes the study.

2. Literature Review

Various approaches have been introduced in the literature for code smell detection.
Fontana et al. [30] proposed an MLT to classify code smell severity. This method can assist
developers in ordering classes or functions. The code smell severity is classified using a
multinomial classification and regression method.

M.N. Pushpalatha et al. [27] proposed the bug’s severity reports prediction for closed
source datasets. For this purpose, they took the dataset (PITS) for NASA projects from the
PROMISE warehouse. They applied ensemble approaches and two-dimensional reduction
techniques (Chi-square and information gain), to improve the accuracy. They obtained
the results that performance of the bagging approach is better in comparison to other
ensemble algorithms.

Aladdin et al. [31] presented eight MLTs to calculate the severity level of a software
bug report in closed source projects. These bug reports are associated with various closed-
source projects evolved by the INTIX company based in Amman, Jordan. They built their
dataset from the JIRA bug tracking system. They found that the decision tree algorithm
achieved better performances than other MLTs.

Pushpalatha et al. [32] presented ensemble algorithms using supervised and unsu-
pervised classification for bug severity reports for closed source datasets. They used
information gain and Chi-square FSA to select the appropriate features from the severity
dataset. They obtained 79.85% to 89.80% varied accuracy for Pits C.

As we have seen, most of the articles above mainly describe code smell recognition
with MLTs. Most of the previous studies examined only a few systems and applied them to
the MLT. Some authors applied parameter optimization approaches and various kinds of
FSAs. Dewangan et al. [23] applied six MLTs, a tuning optimization approach based on
grid search, wrapper-based and Chi-square FSA to select the appropriate features from
each dataset and obtained 100% accuracy with the logistic regression model on the LM
dataset, but the accuracy of other datasets i.e., DC, GC, and FE, was not good.

Table 1 summarizes different kinds of tools and methods used to detect the code smell.
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Table 1. Previous work on code smells detection.

Author Name Year Proposed Model Datasets FSAs Results

Dewangan et al. [5] 2021 Six MLTs code smell datasets from Fontana et al. [7] Chi-square and Wrapper based FSA Logistic regression obtained 100% accuracy for the LM dataset.

Fontana et al. [7] 2016 16 MLT code smell datasets from Fontana et al. [7] N/A In the B-J48 Pruned for LM dataset, the accuracy was 99.10%.

Guggulothu et al. [20] 2020 Random Forest (RF), J48 Unpruned
MLT, B-RF algorithms etc.

FE and LM with Multi-label approach from
Fontana et al. [7] N/A In RF 95.9% accuracy for LM. In B-J48 Pruned 99.1%accuracy

for FE

Mhawish et al. [25] 2020 MLTs code smell datasets from Fontana et al. [7] (with
original and refined datasets)

Genetic algorithm-based GA-CFS
and GA-Naive Bayes FSA 99.70% accuracy for DC dataset

Mohammad Y. Mhawish et al.
[26] 2019 MLTs code smell datasets from Fontana et al. [7] Genetic algorithm-based GA-CFS

and GA-Naive Bayes FSA 98.38% accuracy for LM

M. N. Pushpalatha et al. [27] 2019 Ensemble algorithms Bug severity reports for closed source datasets (NASA
PITs Dataset taken from promise repository [30]) Chi-square and Information gain N/A

Fontana et al. [30] 2017 Multinomial classifier and regression
method Severity code smell datasets from Fontana et al. [30] variance filter, correlation filter In the B-J48 Pruned for FE dataset, the accuracy was 93%.

Aladdin et al. [31] 2019 Eight MLTs Bug report dataset N/A 86.31% accuracy in Logistic regression decision tree

Pushpalatha et al. [32] 2019
Ensemble algorithms using
supervised and unsupervised
classification

Bug severity reports for closed source datasets Information gain and Chi-square 79.85% to 89.80% Varies accuracy for PitsC

I. Kaur et al. [33]. 2021 Ensemble algorithms three open-source java datasets Correlation FSA N/A

M. M. Draz et al. [34]. 2021 Whale optimization algorithm code smell datasets from M.M. Draz et al. [34] N/A The precision and recall were 94.24%, 93.4% respectively.

Gupta et al. [35] 2021 Deep learning Eight code smell dataset from Gupta et al. [35] Wilcoxon Sign Rank Test and
Cross-Correlation analysis 96.84% accuracy in SMOTE algorithm

Di Nucci et al. [36] 2018 MLTs code smell datasets from Fontana et al. [7] N/A Approx 84.00% accuracy in RF and J48 for FE.

Yadav et al. [37] 2021 decision tree model with hyper
parameter tuning code smell datasets from Fontana et al. [7] N/A reached 97.62% in blob class and data class datasets.

F. Pecorelli et al. [38] 2019 MLTs Five matrix-based code smell datasets from F.
Pecorelli et al. [38] N/A DECOR typically obtained better performance than the

ML baseline

Alkharabsheh et al. [39] 2019 MLT (Systematic mapping study) GC dataset Design Smell datasets N/A 99.82% of kappa in RF

Alkharabsheh et al. [40] 2021 Eight MLTs GC datasets Design Smell GC datasets [40] N/A N/A

Mansoor et al. [41] 2017 MLTs code smell datasets from Mansoor et al. [41] N/A Average 87.00% of precision and 92.00% of recall for five
code smell datasets

Proposed approach - Five MLTs and two deep learning code smell datasets Fontana et al. [7] Chi-square All five MLTs obtained 100% accuracy for the LM dataset.
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Table 1 discussed two types of code smell datasets: simple code smell and severity
code smell datasets. In Table 1, the works of literature [5,7,20,25,26,36,37] used the same
dataset: Fontana et al. [7] that is Data class, God class, Feature envy, and Long method.

3. Proposed Research Framework

In this work, we build a model for detecting the code smells using ensemble methods.
Steps of this framework are shown in Figure 1. First, we selected the code smell datasets [7].
Then we applied the min–max normalization technique for feature scaling. After that,
we applied a SMOTE class balancing technique. Then, we applied the Chi-square FSA to
extract the finest features from the datasets. Ensemble and deep learning methods were
applied to them. To improve the performance of ensemble and deep learning methods, we
applied ten-fold cross-validation. Finally, we computed performance measures.

Figure 1. Proposed research scheme.

3.1. Dataset Choice and Illustration

The previous literature [20,22,36] used a code smell dataset from Fontana et al. [7] and
obtained the best accuracy. They also examined systems from the Qualitas Corpus [42],
release 20120401r, one of the most comprehensive compiled benchmark datasets to date,
explicitly created for empirical software engineering research. Therefore, to conduct the
experiment, we used four code smell datasets: DC, GC, FE, and LM [7]. Fontana et al. [7]
selected 74 systems out of 111 of various dimensions and computed a large set of object-
oriented metrics. For the 74 software systems, they calculated 61 metrics for class-level
code smells (DC and GC) and 82 metrics for method-level code smells (FE and LM). They
used various tools and approaches to detect code smells. Table 2 explains the automatic
detection tools and techniques they used. Each dataset they created has 140 smells and
280 no-smells.

Table 2. Automatic Detector Tools and Techniques (ADVISORS) [23].

Code Smells Reference, Tool/Detection Rules

GC iPlasma (GC, Brain Class), PMD [43]

DC iPlasma, Fluid Tool [44], Anti-Pattern Scanner [15]

FE iPlasma, Fluid Tool [44]

LM iPlasma (Brain Method), PMD, Marinescu detection rule [45]
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Table 3 shows the class level and method level code smells datasets. Sixty-one metrics
are computed for DC and GC at the class level code smells. Eighty-two metrics are com-
puted for FE and LM at the method level code smells. These datasets can be downloaded
from http://essere.disco.unimib.it/reverse/MLCSD.html (accessed on 2 August 2022).

Table 3. Class level and method level code smells datasets [23].

Code Smell Dataset Samples Selected Metrics

DC 420 61

GC 420 61

FE 420 82

LM 420 82

The code smells datasets are defined below.
DC: Classes that do not have enough functionality are called data classes. It refers to

those classes that keep data with simple functionality and have other classes that strongly
depend on them. It exposes data through accessor methods [30].

GC: It refers to those classes that have many functionalities. It can be referred to as a
huge class with a large number of lines. It causes problems connected with big code size,
coupling, and complexity [30].

FE: These methods use a lot of data from other classes rather than theirs. They
prefer to use the features of other classes, taking into account features entered via accessor
methods [30].

LM: These methods are the results of a human tendency to write a new code instead
of reading an existing code. An LM has an excessive amount of code, is complex, tough to
recognize, and makes extensive use of data from other classes [30].

3.2. Dataset Normalization

These datasets have different features ranges, so it would be better to normalize the
features before applying MLTs. In this paper, we applied the min–max feature scaling
technique to rescale the range of feature or observation values of datasets between 0–1 [46].
Equation (1) shows the min–max formula, where X is the initial real rate while X′ is the
normalized rate. The Xmin value of the feature is changed into a “0”, and the Xmax value is
changed into a “1”, and every other value is changed into a decimal between 0 and 1.

X
′
=

X− Xmin
Xmax− Xmin

(1)

3.3. Class Balancing Technique

In this study, we applied the SMOTE class balancing technique to balance each class of
each dataset. SMOTE is a famous oversampling approach that was introduced to enhance
random oversampling.

3.4. Feature Selection Approach (FSA)

FSA is used to find the most significant features on which a response is highly de-
pendent. It is one of the most important pre-processing steps in machine learning and
is applied before applying a classification algorithm so that its performance can be im-
proved. We used a Chi-square-based FSA to extract the best metrics to build our ensemble
learning models.

http://essere.disco.unimib.it/reverse/MLCSD.html
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Chi-square FSA is generally applied in the categorical dataset. Chi-square helps in
selecting the best features by testing the relationship between features. The Chi-square
formula is shown in Equation (2):

X2 =
(Observed f requency− Expected f requency)2

Expected f requency
(2)

For the response and independent variables, we can obtain Observed frequency (the
number of observations of feature) and Expected frequency (the number of expected
observations of a feature). Chi-square measures how these two values deviate from each
other. The greater the deviation, the greater the response, and independent variables are
dependent.

We extracted the best metrics from each dataset by which we obtained the highest
accuracy. The set of metrics (e.g., 8, 9, 10, 11, 12, and all features) were extracted for
each model and each dataset and we only selected those with the highest scoring features
by the Chi-square FSA. Table 4 shows these metrics extracted by the Chi-square FSA,
where the first feature is highly scored, and the last feature is a minimum scored feature
(according to the Chi-square FSA). The detailed description of all selected metrics are given
in Appendix A section.

Table 4. Chi-square FSA’s extracted metrics.

Dataset Used Set of Metrics Chi-Square FSA’s Extracted Metrics

DC 09
LOCNAMM_type, LOC_type, WMCNAMM_type,
WMC_type, RFC_type, NOMNAMM_package,
WOC_type, CFNAMM_type, ATFD_type

GC 12

LOC_type, LOCNAMM_type, WMCNAMM_type,
WMC_type, NOMNAMM_package, RFC_type,
CFNAMM_type, ATFD_type, NOMNAMM_type,
NOM_type, FANOUT_type, CBO_type

FE 12

LOC_method, NOAV_method, CYCLO_method,
ATFD_method, ATFD_type, CINT_method,
NOLV_method, CFNAMM_method, FDP_method,
FANOUT_method, CBO_type, Method

LM 12

LOC_method, CYCLO_method, NOAV_method,
NOLV_method, CINT_method, ATFD_type,
CFNAMM_method, ATFD_method,
FANOUT_method, ATLD_method,
MAXNESTING_method, Method

3.5. Proposed Ensemble and Deep Learning Algorithms

AdaBoost: It was discovered by Yoav Freund and Robert Schapire. AdaBoost was the
first popular boosting method for binary classification. The Boosting method combines a
multiple “weak classifier” into a single “strong classifier” [47].

Bagging: Bagging, also known as Bootstrap aggregation, is a type of ensemble MLT
that makes it easier to improve the MLT performance and accuracy. It reduces the error of a
prediction model by applying bias-variance trade-offs to an agreement. Bagging is used in
regression and classification models to prevent data from being over-fit [48].

Max Voting: The Max Voting method is an MLT which uses a set of ensemble methods
and produces the outcomes (class) according to the class with the highest possibility. It
basically sums the outcomes from each classifier submitted to a voting classifier and
forecasts the result class based on the highest number of votes. Generally, a single model
is developed which educates on numerous models and guesses outputs based on the
collective number of votes for every output class, instead of building distinct single models
and judging their performance [49].
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Gradient boosting: The most effective ensemble MLT is the gradient boosting (GB)
algorithm. Bias error and variance error are the two most common forms of mistakes in
MLTs. The GB algorithm is a boosting method that may be used to reduce the algorithm’s
bias inaccuracy. The GB method is employed not just for constant target variables such as
regression, but also for categorical target variables such as classifiers. The mean square
error (MSE) is the cost function when used as a regression, while the log loss is the cost
function when used as a classifier [50].

XGBoost: The XGBoost is also identified as the extreme gradient boosting algorithm.
It is a tree-based MLA with better presentation and speediness. XGBoost was created
by Tianqi Chen and is controlled mainly by the DMLC (Distributed Machine Learning
Community) group. It has gained popularity while yielding desirable results in structured
and tabular data.

Artificial neural network (ANN): The ANN, also known as a neural network (NN),
is a mathematical model that draws on features of biological neural networks, including
their structure and functionality. A neural network uses an artificial neural method of
computation to process data and is made up of a network of artificial neurons linked to
one another [51]. The ANN has three layers: an input layer, a hidden layer, and an output
layer., as shown in Figure 2.

Figure 2. Artificial neural network [52].

Convolutional neural network (CNN): One of the best-known and most frequently
utilized deep learning methods is the convolutional neural network (CNN). CNN’s key
benefit over its forerunners is that it recognizes important elements without human inter-
vention, making it popular [53].

3.6. Evaluation Methodology

As the datasets are small, we used ten-fold cross-validation in order to obtain better
model performance. Figure 3 shows all the processes of the ten-fold cross-validation.

Figure 3. 10-fold Cross-validation technique [54].
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3.7. Key Measurements of Performance

In this study, we evaluated the performance of various experiments. The confusion
matrix (CM) was calculated. The actual and expected information detected by code smell
detection classifiers was stored in the CM. Then using the CM, the true positive (TP), true
negative (TN), false positive (FP), and false-negative (FN) were calculated. The definition
of TP, TN, FP, and FN are given below:

• TP represents the outputs (occurrences) where the algorithm accurately expects the
positive class.

• TN represents the outputs (occurrences) where the algorithm accurately expects the
negative class.

• FP represents the outputs (occurrences) where the algorithm inaccurately expects the
positive class.

• FN represents the outputs (occurrences) where the algorithm inaccurately expects the
negative class.

Definitions and formula of evaluation metrics: PPV, sensitivity, F-measure, AUC_ROC_score,
accuracy, MCC, and Cohen_Kappa_score used to evaluate the model’s performance are
given below:

Positive predictive value (PPV):Positive predictive value measures the number of code
smell instances correctly identified by machine learning methods. PPV is also known as
precision [55]. Formula (3) was used to calculate the positive predictive value. PPV is
calculated as the number of TP divided by the total number of TP and FP.

Positive Predictive Value(PPV) =
TP

TP + FP
(3)

Sensitivity: Sensitivity measures the amount of code smell occurrences recognized by
machine learning methods. The sensitivity is also known as the true positive rate (TPR) and
Recall [55]. Formula (4) was used to calculate the sensitivity. The sensitivity is calculated as
the number of TP divided by the total number of TP and FN.

Sensitivity =
TP

TP + FN
(4)

F-measure: F-measure measures the harmonic mean of positive predictive value (PPV)
and sensitivity, and its stand for a balance between their values [55]. Formula (5) was used
to calculate the F-measure.

F−measure(F) = 2× PPV× Sensitivity
PPV + Sensitivity

(5)

AUC_ROC_Score: The AUC_ROC_score is applied to observe the performance of a
classification model based on its rate of correct and incorrect classifications. ROC represents
the probability, and AUC calculates the degree of separability [55]. It says how much the
model is able to distinguish between classes. An outstanding model puts AUC near one,
which notifies that it has a good measure of separation. A bad model will have an AUC
near 0, notifying that it has the worst measure of separation. Indeed, it means it returns
the result and calculates 0s as 1s and 1s as 0s. When an AUC is 0.5, the model has no class
separation ability in the model.

Accuracy: Accuracy measures the association between PPV and sensitivity. It displays
the percentage of positive and negative instances that were accurately categorized [55].
Formula (6) was used to calculate accuracy. Accuracy is calculated as the total number of
TP and TN divided by the total number of TP, TN, FP, and FN.

Accuracy(A) =
TP + TN

TP + TN + FP + FN
(6)
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Matthews Correlation Coefficient (MCC): The Matthews correlation coefficient (MCC)
is utilized in MLT to determine the quality of two-class or binary classification. It obtains
true and false positives and negatives and is normally considered a balanced calculation
that can be utilized if the classes are of significantly different sizes [56]. The formula for
calculating the MCC is given in Equation (7).

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)

Cohen_Kappa_Score: Cohen_Kappais a metric which is utilized to evaluate the agree-
ment between two raters. It can also be utilized to evaluate the performance of a classifica-
tion model [57]. The formula for calculating the Cohen_Kappa is given in Equation (8).

Cohen Kappa =
P0 − Pe

1− Pe
(8)

4. The Outcome of Proposed Algorithms

To answer RQ1, we implemented five ensemble and two deep learning algorithms
and found the performance accuracy of each algorithm. Additionally, a Chi-square FSA
was applied to select the best metrics from each dataset. The best metrics chosen by the
Chi-square FSA are shown in Table 4. All experimental findings of each ensemble and deep
learning method are presented in Tables 5–11. In each experiment table, we have shown
seven performance measurements: PPV, Sensitivity, F-measure, AUC_ROC_score, Accuracy,
MCC, and Cohen_Kappa_score. The performance comparison of all five ensemble and two
deep learning algorithms is shown in Table 12.

Table 5. Results of AdaBoost algorithm.

Datasets PPV
(%)

Sensitivity
(%)

F-Measure
(%)

AUC_ROC_Score
(%) Accuracy (%) MCC

(%)
Cohen_Kappa

(%)

DC 98 99 99 84.26 98.80 94.47 94.30

GC 97 97 97 87.97 97.62 91.92 91.89

FE 100 100 100 98.72 100 100 100

LM 100 100 100 98.98 100 100 100

Table 6. Results of Bagging algorithm.

Datasets PPV
(%)

Sensitivity
(%)

F-Measure
(%)

AUC_ROC_Score
(%) Accuracy (%) MCC

(%)
Cohen_Kappa

(%)

DC 100 100 100 97.92 98.80 94.42 94.42

GC 100 100 100 98.92 97.62 97.55 97.51

FE 100 100 100 94.20 100 100 100

LM 100 100 100 88.80 99.94 100 100

Table 7. Results of Max voting algorithm.

Datasets PPV
(%)

Sensitivity
(%)

F-Measure
(%)

AUC_ROC_Score
(%) Accuracy (%) MCC

(%)
Cohen_Kappa

(%)

DC 100 100 100 94.62 98.81 100 100

GC 98 97 98 85.24 97.62 88.97 88.37

FE 100 100 100 97.67 97.87 94.40 94.25

LM 100 100 100 97.62 97.92 80.95 80.95
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Table 8. Results of Gradient boosting algorithm.

Datasets PPV
(%)

Sensitivity
(%)

F-Measure
(%)

AUC_ROC_Score
(%) Accuracy (%) MCC

(%)
Cohen_Kappa

(%)

DC 100 100 100 92.40 98.80 94.89 94.89

GC 99 99 99 91.84 97.62 92.66 92.62

FE 100 100 100 97.25 95.74 90.20 89.72

LM 100 100 100 95. 66 100 100 100

Table 9. Results of XGboost algorithm.

Datasets PPV
(%)

Sensitivity
(%)

F-Measure
(%)

AUC_ROC_Score
(%) Accuracy (%) MCC

(%)
Cohen_Kappa

(%)

DC 100 100 100 92.54 99.80 100 100

GC 98 99 99 87.26 97.62 94.69 94.54

FE 100 100 100 93.40 100 92.36 92.07

LM 100 100 100 84.33 100 100 100

Table 10. Results of ANN algorithm.

Datasets PPV
(%)

Sensitivity
(%)

F-Measure
(%)

AUC_ROC_Score
(%) Accuracy (%) MCC

(%)
Cohen_Kappa

(%)

DC 96 96 96 93.64 97.82 95.52 95.12

GC 96 96 96 92.89 97.23 96.26 96.12

FE 98 98 98 97.28 97.98 99.12 99.08

LM 98 97 98 96.29 98.25 98.78 98.66

Table 11. Results of CNN algorithm.

Datasets PPV
(%)

Sensitivity
(%)

F-Measure
(%)

AUC_ROC_Score
(%) Accuracy (%) MCC

(%)
Cohen_Kappa

(%)

DC 98 99 98 93.64 97.82 95.52 95.12

GC 99 99 98 92.89 97.23 96.26 96.12

FE 100 99 100 99.12 99.08 99.12 99.08

LM 100 100 99 99.29 99.26 98.78 98.66

Table 12. Comparison Performance between Five Ensemble and Two Deep Learning Methods code
smells Datasets.

Algorithms
DC GC FE LM

F (%) AUC (%) A (%) F (%) AUC (%) A (%) F (%) AUC (%) A (%) F (%) AUC (%) A (%)

AdaBoost 99.00 84.26 98.80 97.00 87.97 97.62 100 98.72 100 100 98.98 100

Bagging 100 97.92 98.80 100 98.92 97.62 100 94.20 100 100 88.80 99.94

Max voting 100 94.62 98.81 98.00 85.24 97.62 100 97.67 97.87 100 97.62 97.92

Gradient Boosting 100 92.40 98.80 99.00 91.84 97.62 100 97.25 95.74 100 95. 66 100

XGBoost 100 92.54 99.80 99.00 87.26 97.62 100 93.40 100 100 84.33 100

ANN 96.00 93.64 97.82 96.00 92.89 97.23 98.00 97.28 97.98 98.00 96.29 98.25

CNN 98.00 93.64 97.82 98.00 92.89 97.23 100 99.12 99.08 99.00 99.29 99.26

Note: F—F-score, AUC—AUC_ROC_Score, A—Accuracy.

4.1. PerformanceComparisonbetweenFive Ensemble and Two Deep Learning Methods

This section compares the outcomes of all five used ensemble and two deep learning
techniques applied on ten features selected by the Chi-square FSAs. Table 12 shows
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comparative performance of all applied ensemble and two deep learning techniques using
the AUC ROC Score, F-measure, and Accuracy. From Table 12 it isclear that the AdaBoost
approach obtains the highest accuracy of 100% for the FE and LM datasets, while the
worst accuracy of 97.62% is for the GC dataset. The Bagging algorithm obtains the highest
accuracy of 100% for the FE dataset and the worst accuracy of 97.62% for the GC dataset.
The Max voting approach achievedthe best accuracy, 98.81%, for the DC dataset and the
worst accuracy, 97.62%, for the GC dataset. The Gradient boosting algorithm obtainedthe
highest accuracy of 100% for the LM data set and the worst accuracy of 95.74% for the FE
dataset. The XGBoost approach obtainedthe highest accuracy of 100% for the FE and LM
datasets, while the worst accuracy was 97.62% for the GC dataset. The ANN approach
obtainedthe highest accuracy of 98.25% for the LM datasets, while the worst accuracy was
97.23% for the GC dataset. The CNN approach obtainedthe highest accuracy of 99.26% for
the LM datasets, while the worst accuracy was 97.23% for the GC dataset.

4.2. Effect of Subset of Features Selected by Chi-Square FSA on Model Accuracy

Chi-square FSAs were used to answer RQ2. This experiment was done to see the effect
of Chi-square FSA to identify the software features which are important in recognizing
the code smells. Table 13 shows how the performance accuracy of the ensemble and
deep learning approaches is affected when the number of selected metrics isincreased
by one in each step. The comparison indicates that the feature extraction is helpful to
improve the accuracy of nearly all ensemble methods for all datasets, and that it has
slightly different effects on each model and each dataset. However, in some models, such
as Bagging, Gradient boosting, XGBoost algorithms, ANN, and CNN, the FSA increases
accuracy greatly. In Adaboosting and the Max voting algorithm, feature extraction had no
significant effect.

Table 13. Outcomes of Ensemble algorithms for different sets of selected features.

MLT Number of
Selected Features

Accuracy for DC
Dataset (%)

Accuracy for GC
Dataset (%)

Accuracy for FE
Dataset (%)

Accuracy for LM
Dataset (%)

Adaboost
algorithm

8 96.43 95.23 100 100
9 97.61 97.62 100 100

10 98.80 97.62 100 100
11 98.80 97.62 97.87 97.91
12 97.61 97.62 100 100

All features 98.80 97.62 100 100

Bagging algorithm

8 99.92 98.80 97.87 97.92
9 97.62 97.62 97.87 97.92

10 98.80 97.62 100 99.94
11 97.62 98.80 97.87 100
12 97.62 99.24 100 100

All Features 98.80 98.80 97.87 100

Max voting
algorithm

8 98.81 95.24 97.87 97.92
9 100 97.61 97.87 100

10 98.81 97.62 97.87 97.92
11 98.80 97.62 100 97.92
12 98.80 96.42 91.45 97.92

All Features 97.62 95.23 100 100

Gradient boosting
algorithm

8 99.96 98.80 100 100
9 98.80 96.43 100 100

10 98.80 97.62 95.74 100
11 99.28 98.80 95.74 100
12 98.80 97.62 97.87 100

All features 98.80 98.80 97.87 100
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Table 13. Cont.

MLT Number of
Selected Features

Accuracy for DC
Dataset (%)

Accuracy for GC
Dataset (%)

Accuracy for FE
Dataset (%)

Accuracy for LM
Dataset (%)

XGboost algorithm

8 98.80 96.42 97.87 100
9 98.80 97.62 97.87 100

10 99.80 97.62 100 100
11 99.88 98.80 99.56 97.92
12 99.26 97.62 97.87 97.92

All features 98.80 97.62 97.87 97.92

ANN

8 97.23 97.12 97.98 97.96
9 97.23 97.14 97.98 97.96

10 97.82 97.23 97.98 98.25
11 98.67 97.98 98.76 98.25
12 98.62 97.23 98.98 99.02

All features 99.12 97.56 98.76 98.25

CNN

8 97.82 97.12 98.76 98.88
9 97.82 97.23 98.98 98.88

10 97.82 97.23 99.08 99.26
11 98.98 98.24 99.08 99.26
12 99.26 98.24 99.56 99.36

All features 99.16 98.78 99.36 99.26

4.3. Effect of Class Balancing Technique (SMOTE) on Model Accuracy

A class balancing technique (SMOTE) was used to answer RQ3. This experiment was
performed to see the effect of SMOTE on the accuracy performance of code smell detection.
Table 14 shows how the SMOTE class balancing technique’s performance accuracy affects
each ensemble and deep learning method’s performance accuracy for each code smell
dataset. The comparison indicates that the SMOTE is helpful in improving the accuracy
of some models such asAdaBoost, GB, XGBoost, and ANN models for the DC dataset.
Likewise, the AdaBoost, Max voting, GB, and ANN model enhance the accuracy of the
GC dataset.

Table 14. Outcomes of Ensemble algorithms with and without applied SMOTE.

Algorithms

DC GC FE LM

Accuracy
with

Applied
SMOTE

Accuracy
without
Applied
SMOTE

Accuracy
with

Applied
SMOTE

Accuracy
without
Applied
SMOTE

Accuracy
with

Applied
SMOTE

Accuracy
without
Applied
SMOTE

Accuracy
with

Applied
SMOTE

Accuracy
without
Applied
SMOTE

AdaBoost 99.10 98.80 98.21 97.62 98.65 100 100 100
Bagging 99.11 99.92 98.21 99.24 100 100 100 100

Max voting 99.10 100 98.21 97.62 100 100 100 100
Gradient
Boosting 100 99.96 99.10 98.80 100 100 100 100

XGBoost 100 99.88 97.32 98.80 98.64 100 100 100
ANN 99.12 98.67 98.37 97.98 99.06 98.98 99.00 99.02
CNN 99.26 99.26 98.78 98.78 99.24 99.56 99.67 99.36

5. Discussion
5.1. Result Comparison of Our Approach with Others’ Correlated Work

A few other authors [22,30,31,33,42] also worked on the same code smell datasets.
These authors used machine learning and stack ensemble learning algorithms. In this
subsection, we compared the outcomes of our approach with previous related works. They
are shown in Table 15.
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Table 15. Result comparison of our approach with other correlated works.

Year Author Name

Datasets

DC GC FE LM

Best
Algorithm

Accuracy
(%)

Best
Algorithm

Accuracy
(%)

Best
Algorithm

Accuracy
(%)

Best
Algorithm

Accuracy
(%)

2016 Fontana et al. [7] B-J48 Pruned 99.02 Naive Bayes 97.55 B-JRip 96.64 B-J48 Pruned 99.43

2018 Nucci et al. [36] RF and J48 Approx 83 J48 and RF Approx 83 J48 and RF Approx 84 J48 and RF Approx 82

2020 Mhawishet al. [25] RF 99.70 GBT 98.48 Decision tree 97.97 RF 95.97

2020 Guggulothu et al. [20] - - - - B-J48 Pruned 99.10 RF 95.90

2021 Alazba et al. [22] Stack-LR 98.92 Stack-SVM 97.00 Stack-LR 95.38 Stack-SVM 99.24

2021 Dewangan et al. [23] RF 99.74 RF 98.21 Decision tree 98.60 Logistic
Regression 100.00

Proposed Approach Max Voting 100 Bagging 99.24 All five methods 100 All Five Methods 100

Dewangan et al. [23] achieved 99.74% accuracy with the RF technique employing all
features on the DC dataset. Fontana et al.’s [7] approach applied human-understandable
detection rules for J48 and JRip algorithms and found 99.02% highest accuracy for the
B-J48 Pruned approach. Mhawish et al. [25] used the GA-based FSA and found the highest
accuracy, 99.70%, using the RF approach. Nucci et al. [36] applied the gain ratio FSA and
found around 83% accuracy with the RF and J48 approach. Alazba et al. [22] used the gain
FSA and found the highest accuracy, 98.92%, using the Stack-LR algorithm, whereas this
approach’s accuracy was 100% using the Max voting algorithm with nine features.

Dewangan et al. [23] achieved 98.21% accuracy utilizing the RF method with Chi-
square FSA on the GC dataset. Fontana et al. [7] applied human-understandable detection
rules for the J48 and JRip algorithms and found 97.55% highest accuracy in the Naive Bayes
algorithm. Mhawish et al. [25] used the GA-based FSA and found the highest accuracy,
98.48%, using the GBT model. Nucci et al. [36] applied the gain ratio FSA and found around
83% accuracy with the RF and J48 approach. Alazba et al. [22] used the gain FSA and
found the highest accuracy, 97%, using the Stack-SVM algorithm, whereas this experiment’s
accuracy was 99.24% with the Bagging approach using 12 features.

Dewangan et al. [23] used the Decision tree algorithm with all features and achieved
98.60% accuracy on the FE dataset. Fontana et al.’s [7] approach applied human-understandable
detection rules for the J48 and JRip algorithms and found 96.64% greatest accuracy with the
B-JRip approach. Mhawish et al. [25] used the GA-based FSA and found the greatest ac-
curacy of 97.97% with the Decision tree approach. Nucci et al. [36] applied the gain ratio
FSA, and obtained accuracy of around 84% with the RF and J48 approach. Alazba et al. [22]
used the gain FSA and found the greatest accuracy, 95.38%, using the Stack-LR algorithm.
Guggulothu et al. [20] converted the dataset into the multi-label dataset, and found the great-
est accuracy of 99.10% with the B-J48 Pruned approach. Whereas this approach’s accuracy
was100% using all five algorithms (where the AdaBoost model used eight, nine, 10, 12 and all
features, the Bagging model used10 and 12 features, the Max voting model used11 and all
features, the GB model used eight and nine features, and the XGB model used 10 features).

Dewangan et al. [23] used the Logistic regression approach using all features and
achieved 100% accuracy on the LM dataset. Fontana et al.’s [7] approach applied human-
understandable detection rules for the J48 and JRip algorithm and found 99.43% great-
est accuracy using the B-J48 pruned approach. Mhawish et al. [25] used the GA-based
FSA and found the greatest accuracy of 95.97% with the RF approach. Nucci et al. [36]
applied the gain ratio FSA and found 82% accuracy with the J48 and RF approaches.
Guggulothu et al. [20] converted the dataset into the multi-label dataset, and they found
the greatest accuracy of 95.90% with the RF algorithm. Alazba et al. [22] used the gain FSA
and found the greatest accuracy, 99.24%, using the Stack-SVM algorithm. Whereas this
approach’s accuracy was 100% using all five algorithms (where the AdaBoost model used
eight, nine, 10, 12 and all features, the Bagging model used11, 12 and all features, the Max
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voting model used nine and all features, the GB model used eight, nine, 10, 11, 12, and all
features, and the XGB model used eight, nine, and 10 features).

5.2. Analysis of Our Work

In this paper, we have mainly focused on ensemble, deep learning algorithms, the
SMOTE balancing technique, and the Chi-square FSA. In this experiment, we established
that the ensemble algorithm found the best results compared to our previous work [23],
in which six MLTs were applied. We showed our outcomes obtained from five ensemble
and two deep learning algorithms in Tables 5–11. All comparisons of our outcomes with
other previous works are shown in Table 15. We used seven performance measurements
for evaluating the model’s performance: PPV, Sensitivity, F-measure, AUC_ROC_score,
Accuracy, MCC, and Cohen_Kappa_score. All proposed ensemble algorithms produced
excellent results for DC, FE, and LM datasets. This research work answers the research
questions (discussed in the introduction section).

To answer the RQ1, Five ensemble and two deep learning models are applied. Ensem-
ble approaches have been shown to be quite good at predicting code smells. Furthermore,
to answer the RQ2: the Chi-square FSA is applied to improve the performance accuracy.
The best metrics are identified by the Chi-square FSA as shown in Table 4. The results
indicate that it improves the accuracy of all ensemble methods for all datasets. However,
the improvement is different for each model and dataset combination. Bagging, Gradient
boosting, and XGBoost algorithms give the best accuracy, but feature extraction has no
significant effect on the Max voting algorithm. Our implemented code and datasets are
available at the link: https://github.com/seemadewangan/AdaBoost-Model-with-Chi-
square-.git(accessed on 4 September 2022). To answer the RQ3, we applied a SMOTE
balancing technique.

5.3. Result and All Model Comparison of Our Approach with Other Correlated Works

This subsection presents models applied by various authors and the greatest accuracy
they obtained for the same dataset (Data class, God class, Feature envy, and Long method).
The previous literature [7,20,22,36,37] proposed various types of machine learning, and en-
semble learning algorithms on the same datasets (Fontana et al. [7]), and each author found
different results. Table 16 shows all the model names applied in the previous literature.

Various authors applied machine learning and ensemble learning algorithms for the
data class dataset. First, Fontana et al. [7] created this dataset and applied machine learning
to it. They found 99.02% greatest accuracy using the B-J48 Pruned algorithm. After that,
Mahvish et al. [25] obtained the greatest accuracy, 99.70%, using the RF model. They
applied Deep learning and five other machine learning algorithms with genetic algorithm-
based FSA and Grid search-based parameter optimization techniques. Dewangan et al. [23]
also applied six machine learning algorithms with the Chi-square and Wrapper-based FSA
and Grid search parameter optimization and obtained 99.74% greatest accuracy using RF.
But in the earlier literature, the authors neither handled class imbalance nor studied the
performance of boosting and bagging ensemble learning algorithms. Therefore, in this
work, we applied five ensemble learning and two deep learning algorithms with the Chi-
square FSA and SMOTE class balancing techniques. We obtained 100% accuracy using the
Max voting algorithm. In this way, we found that ensemble learning is the best algorithm
for detecting the code smells from the data class dataset.

https://github.com/seemadewangan/AdaBoost-Model-with-Chi-square-.git
https://github.com/seemadewangan/AdaBoost-Model-with-Chi-square-.git
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Table 16. Result and all model comparison of our approach with other correlated works.

Author Name Applied Algorithms
Datasets

DC GC FE LM

Applied FSA and
Other Techniques

Accuracy (%) with
Best Algorithm

Accuracy (%) with
Best Algorithm

Accuracy (%) with
Best Algorithm

Accuracy (%) with
Best Algorithm

Fontana et al. [7]

B-J48 Pruned, B-J48 UnPruned, JRip Pruned,
JRipUnPruned, RF, Naive Bayes, SMO LibSVM,
B-Random Forest, B-JRip, J48 Reduced Error
Pruning, B-J48 Reduced Error Pruning

- 99.02% accuracy using
B-J48 Pruned

97.55% accuracy using
Naive Bayes

96.64% accuracy using
B-JRip

99.43% accuracy using
B-J48 Pruned

Nucci et al. [36]

B J48 Pruned, B J48 Unpruned, J48 Reduced
Error Pruning, B-J48 Reduced Error Pruning, B
JRip, B-RF, B-Naive Bayes, B SMO RBF, B SMO
Poly, B LibSVM C-SVC Linear, B LibSVM C-SVC
Poly, B LibSVM C-SVC Radial, B LibSVM C-SVC
Sigmoid, RF, Naive Bayes, SMO RBF, SMO
Polynomial, LibSVM C-SVC Linear, LibSVM
C-SVC Poly, LibSVM C-SVC Radial, LibSVM
C-SVC Sigmoid

GainRatio FSA Approx 83% accuracy
using RF and J48

Approx 83% accuracy
using J4 and RF

Approx 84% accuracy
using J48 and RF

Approx 82% accuracy
using J48 and RF

Mhawishet al. [25] Deep learning, DT, GBT, SVM, RF, MLP

Genetic Algorithm
based FSA and Grid

search-based parameter
optimization technique

99.70% accuracy using
RF

98.48% accuracy using
GBT

97.97% accuracy using
DT

95.97% accuracy using
RF

Guggulothuet al. [20] J48 Pruned, RF, B-J48 Pruned, B-J48 UnPruned,
B-Random Forest - - - 99.10% accuracy using

B-J48 Pruned
95.90% accuracy using

RF

Alazba et al. [22]
DT, SVM(Lin), SVM(Sig), SVM(Poly), SVM(RBF),
NB(B), NB(M), NB(G), LR, MLP, SGD, GP, KNN,
LDA, Stack-LR, Stack-DT, Stack-SVM

Gain FSA 98.92% accuracy using
Stack-LR

97.00% accuracy using
Stack-SVM

95.38% accuracy using
Stack-LR

99.24% accuracy using
Stack-SVM

Dewangan et al. [23] Naive Bayes, KNN, DT, MLP, LR, RF

Chi-squared and
Wrapper-based FSA,

and Grid search
parameter optimization

99.74% accuracy using
RF

98.21% accuracy using
RF

98.60% accuracy using
DT 100% accuracy using LR

P.S. Yadav et al. [37] decision tree model with hyper parameter tuning Grid search parameter
optimization

97.62% accuracy using
DT

97.62% accuracy using
DT - -

Proposed Approach AdaBoost, Bagging, Max voting, GB, XGBoost,
ANN, CNN

Chi-squared FSA, and
SMOTE class balancing

technique

100% accuracy using
Max voting

99.24% accuracy using
Bagging

100% accuracy using all
five ensemble methods

100% accuracy using all
five ensemble methods
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For the god class dataset, first, Fontana et al. [7] created this dataset and applied
sixteen machine learning models to these. They found 97.55% greatest accuracy using
the Naïve Bayes algorithm. After that, Mahvish et al. [25] obtained the greatest accuracy,
98.48%, using the GBT model. They applied Deep learning and five other machine learning
algorithms with genetic algorithm-based FSA and Grid search-based parameter optimiza-
tion techniques. Dewangan et al. [23] also applied six machine learning algorithms with
Chi-square, Wrapper-based FSA and Grid search parameter optimization and obtained
98.21% greatest accuracy using the RF, which is not a good result as compared to previous
literature. But in the earlier literature, the authors neither handled class imbalance nor
studied the performance of boosting and bagging ensemble learning algorithms. Therefore,
in this work, we applied five ensemble learning, two deep learning algorithms with Chi-
square FSA and the SMOTE class balancing technique. We obtained 99.24% accuracy using
the Bagging algorithm. In this way, we found that ensemble learning is the best algorithm
for detecting the code smells from the god class dataset.

Various authors applied machine learning and ensemble learning algorithms for the
feature envy dataset. First, Fontana et al. [7] created this dataset and applied machine
learning to it. They found 96.64% greatest accuracy using the B-JRip algorithm. After
that, Mahvish et al. [25] obtained the greatest accuracy, 97.97%, using the DT model.
They applied Deep learning and five other machine learning algorithms with the genetic
algorithm-based FSA and Grid search-based parameter optimization techniques. Gug-
gulothu et al. [20] applied five machine learning algorithms and obtained 99.10%, the
greatest accuracy using the B-J48 Pruned algorithm. Dewangan et al. [23] also applied six
machine learning algorithms with Chi-square and Wrapper-based FSA and Grid search
parameter optimization and obtained 98.60% greatest accuracy using the DT model, which
is not a good result as compared to previous literature. But in the earlier literature, the
authors neither handled class imbalance nor studied the performance of boosting and
bagging ensemble learning algorithms. Therefore, in this work, we applied five ensemble
learning, two deep learning algorithms with Chi-square FSA, and the SMOTE class bal-
ancing technique. We obtained 100% accuracy using all five ensemble models (AdaBoost,
Bagging, Max voting, GB, XGBoost). In this way, we found that ensemble learning is the
best algorithm for detecting the code smells from the feature envy dataset.

For the Long method dataset also, various authors applied various types of machine
learning and ensemble learning algorithms. First, Fontana et al. [7] created this dataset
and applied machine learning to it. They found 99.43% greatest accuracy using the B-J48
Pruned algorithm. After that, Alazba et al. [22] obtained the greatest accuracy of 99.24%
using the Stack-SVM model. They applied 17machine learning algorithms with the gain
FSA. Dewangan et al. [23] also applied six machine learning algorithms with Chi-square
and Wrapper-based FSA and Grid search parameter optimization and obtained 100%
greatest accuracy using the LR. But in the earlier literature, the authors neither handled
class imbalance nor studied the performance of boosting and bagging ensemble learning
algorithms. Therefore, in this work, we applied five ensemble learning and two deep
learning algorithms with the Chi-square FSA, and the SMOTE class balancing technique.
We obtained 100% accuracy using all five ensemble models (AdaBoost, Bagging, Max
voting, GB, XGBoost). In this way, we found that ensemble learning is the best algorithm
for detecting the code smells from the feature envy dataset.

5.4. Statistical Analysis

We used a Paired t-test to find out whether there was a statistically significant differ-
ence between the two classifiers such that we could employ only the best one. This paired
t-test needs the utilization of N different test sets on which to calculate each classifier. We
used ten-fold cross-validation for N test sets. The accuracy for each classifier across each
code smell dataset is shown in Table 17. We calculated the statistical analysis with ten-fold
cross-validation through the F-measure using a Paired t-test. We observed that for the Data
class dataset, the GradientBoosting and AdaBoost algorithms were the highest-scoring
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algorithms. For the God class dataset, the Max voting algorithm was the highest-scoring
algorithm. For the feature envy dataset, the Maxvoting and XGBoost algorithms were
the highest-scoring algorithms. For the Long method dataset, the Maxvoting algorithm
was the highest-scoring algorithm. Therefore, the Maxvoting classifier is best for code
smell detection.

Table 17. Statistical Analysis.

Classifier Data Class (%) God Class (%) Feature Envy (%) Long Method (%)

AdaBoost 98 97 97 97
Bagging 80 90 80 90

Max voting 97 98 98 99
Gradient
Boosting 98 97 97 97

XGBoost 97 97 98 97
ANN 80 90 80 90
CNN 80 90 80 90

5.5. Threats to Validity

This subsection discusses threats related to internal validity, external validity, and
conclusion validity. One of the threats to internal validity is the dataset. It is the most
serious internal threat to our experiment. As mentioned above, Fontana et al. [7] developed
the dataset that we used for this study. They created the database by employing code smells
consultants to choose candidates from a large collection of 74 diverse software applications
(Qualitas Corpus) and carefully certifying the 420 instances to every code smell. To create
this collection of datasets, many metrics (features) are assessed. Many of these metrics may
or may not have an effect on the outcomes of the models that were applied. The second
threat to internal validity is the feature selection technique that we used- Chi-square FSAs.
Chi-Square is sensitive to small frequencies in features considered. Generally, when the
expected value in a feature is less than five, the Chi-square can lead to errors in conclusions.
To handle this threat, we analyzed the datasets and found that this condition does not occur
in our dataset.

Threats to external validity in our study are as follows: The first issue is that the
dataset only contains two code smells: class-level and method-level smells. The second
vulnerability is connected to the software applications that are used to produce the dataset,
which are entirely in Java language code. As a result, our technique may not be suitable for
C and C++ programming languages.

Threats to conclusion validity are summarized as follows: They are related to evaluat-
ing the model’s performance. The metrics we used for evaluation of models’ performance
may not suffice. We tried to manage this threat by using multiple evaluation metrics, such
as PPV, Sensitivity, F-measure, AUC_ROC_score, Accuracy, MCC, and Cohen_Kappa_score.
It was further improved using ten-fold cross-validation.

6. Conclusions and Future Scope

This paper proposed ensemble and deep learning methods to detect the code smells.
Four code smell datasets, DC, GC, FE, and LM, were used, created by Fontana et al. [7],
using 74 open-source systems. The Chi-square FSA was applied to select the best metrics
from each dataset to improve performance accuracy.

The five ensemble MLTs (AdaBoost, Bagging, Max Voting, Gradient Boosting, XG-
Boost), and two deep learning (ANN and CNN) are applied to detect the code smells. This
research work is implemented two-fold: (i) the first fold applied ensemble approaches
to detect the code smells and (ii) the seven performance measurements (PPV, Sensitivity,
F-measure, AUC_ROC_score, Accuracy, MCC, and Cohen_Kappa_score) are computed
in the second fold to compare these ensemble MLTs. Chi-square FSAs with a ten-fold
cross-validation approach wereused to improve accuracy.
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The AdaBoost algorithm achieved the greatest accuracy of 100% for the FE and the
LM datasets when the number of selected features were eight, nine, 10, and 12, and the
whole set of metrics, while the worst accuracy was 95.23% for the GC dataset when the
number of selected features was eight.

The Bagging algorithm achieved the greatest accuracy of 100% for the FE (when the
number of selected features were 10and 12) and the LM (when the number of selected
features were 11, 12and the whole set of metrics) datasets. The worst accuracy of 97.62%
was achieved for the DC (when the number of selected features were nine, 11, and 12) and
GC (when the number of selected features were nine and 10) datasets.

The Max Voting algorithm obtained the greatest accuracy of 100% for the DC (when
the number of selected features was nine), the FE (when the number of selected features
was11, and the whole set of metrics), and the LM (when the number of selected features
wasnine and the whole set of metrics) datasets. The worst accuracy, 91.45%, was obtained
for the FE dataset for 12 selected features.

The Gradient Boosting algorithm obtained the greatest accuracy of 100% for the FE
(when the number of selected features was eight and nine) and the LM (when the number of
selected features was eight, nine, 10, 11, 12 and the whole set of metrics) datasets, while the
worst accuracy, 95.74%, was obtained for the FE dataset if the number of selected features
was 10 and 11.

The XGBoost algorithm obtains the greatest accuracy of 100% for, the FE (when the
number of selected features was 10) and the LM (when the number of selected features was
eight, nine, and 10) datasets, while the worst accuracy of 96.42% was obtained for GC if the
number of selected features was eight.

The ANN algorithm obtains the greatest accuracy of 99.12% for the DC (when all
features were selected), while the worst accuracy of 97.12% was obtained for the GC if the
number of selected features was eight.

The CNN algorithm obtains the highest accuracy of 99.56% for the FE (when the
number of selected features was 12), while the worst accuracy of 97.12% was obtained for
the GC if the number of selected features was eight.

We utilized two kinds of smells in this paper: class and method level smell with
limited features. This paper presents several experiments that would be interesting for
software developers as well as research practitioners working in this or a similar domain.

In future work, we are planning to improve results by applying algorithms to solve
data augmentation techniques. Other learning algorithms as well as feature selection
techniques should also be explored to find the best techniques for code smell detection.
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Appendix A

Table A1. Best feature of each method.

Algorithms DC GC FE LM

AdaBoost LOCNAMM_type,
LOC_type,
WMCNAMM_type,
WMC_type, RFC_type,
NOMNAMM_package,
WOC_type,
CFNAMM_type,
ATFD_type

LOC_type,
LOCNAMM_type,
WMCNAMM_type,
WMC_type,
NOMNAMM_package,
RFC_type,
CFNAMM_type,
ATFD_type,
NOMNAMM_type,
NOM_type,
FANOUT_type, CBO_type

LOC_method,
NOAV_method,
CYCLO_method,
ATFD_method,
ATFD_type,
CINT_method,
NOLV_method,
CFNAMM_method,
FDP_method,
FANOUT_method,
CBO_type, Method

LOC_method,
CYCLO_method,
NOAV_method,
NOLV_method,
CINT_method,
ATFD_type,
CFNAMM_method,
ATFD_method,
FANOUT_method,
ATLD_method,
MAXNESTING_method,
Method

Bagging

Max voting

Gradient Boosting

XGBoost

ANN

CNN

Table A2. Description of all selected metrics [7].

Quality
Dimension Metric Label Metric Name Granularity

Size LOC_type Lines of Code Project, Package,
Class, Method

Size LOCNAMM_type Lines of Code Without Accessor or
Mutator Methods Class

Complexity WMCNAMM_type Weighted Methods Count of Not Accessor
or Mutator Methods Class

Complexity WMC_type Weighted Methods Count Class

Size NOMNAMM_package Number of Not Accessor or Mutator Methods Project, Package, Class

Coupling RFC_type Response for a Class Class

Coupling CFNAMM_type Called Foreign Not Accessor or
Mutator Methods Class, Method

Coupling ATFD_type Access to Foreign Data Method

Coupling FANOUT_type - Class, Method

Size NOMNAMM_type Number of Not Accessor or Mutator Methods Class

Size NOM_type Number of Methods Project, Package, Class

Coupling CBO_type Coupling Between Objects Classes Class

- WOC_type - Class

Complexity NOAV_method Number of Accessed Variables Method

Complexity CYCLO_method Cyclomatic Complexity Method

Coupling CINT_method Coupling Intensity Method

Size MAXNESTING_method Maximum Nesting Level Method
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