
Citation: Ehsan, A.; Catal, C.; Mishra,

A. Detecting Malware by Analyzing

App Permissions on Android

Platform: A Systematic Literature

Review. Sensors 2022, 22, 7928.

https://doi.org/10.3390/s22207928

Academic Editors: Yushu Zhang

and Zhongyun Hua

Received: 6 September 2022

Accepted: 12 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Detecting Malware by Analyzing App Permissions on Android
Platform: A Systematic Literature Review
Adeel Ehsan 1 , Cagatay Catal 1 and Alok Mishra 2,*

1 Department of Computer Science & Engineering, Qatar University, Doha 2713, Qatar
2 Informatics and Digitalization Group, Faculty of Logistics, Molde University College-Specialized University

in Logistics, 6410 Molde, Norway
* Correspondence: alok.mishra@himolde.no

Abstract: Smartphone adaptation in society has been progressing at a very high speed. Having
the ability to run on a vast variety of devices, much of the user base possesses an Android phone.
Its popularity and flexibility have played a major role in making it a target of different attacks via
malware, causing loss to users, both financially and from a privacy perspective. Different malware
and their variants are emerging every day, making it a huge challenge to come up with detection and
preventive methodologies and tools. Research has spawned in various directions to yield effective
malware detection mechanisms. Since malware can adopt different ways to attack and hide, accurate
analysis is the key to detecting them. Like any usual mobile app, malware requires permission to take
action and use device resources. There are 235 total permissions that the Android app can request on
a device. Malware takes advantage of this to request unnecessary permissions, which would enable
those to take malicious actions. Since permissions are critical, it is important and challenging to
identify if an app is exploiting permissions and causing damage. The focus of this article is to analyze
the identified studies that have been conducted with a focus on permission analysis for malware
detection. With this perspective, a systematic literature review (SLR) has been produced. Several
papers have been retrieved and selected for detailed analysis. Current challenges and different
analyses were presented using the identified articles.

Keywords: malware detection; static analysis; hybrid analysis; permissions analysis

1. Introduction

Mobile phones have become a constant, everyday companion of human users. As re-
ported by Statista [1], the number of users currently owning smartphones is six billion,
which is expected to grow by hundreds of millions in the few coming years. From mak-
ing calls and sending messages to operating financial accounts, smartphones are making
everyday tasks possible right from the palm of the hands. This capability has come with
great challenges. Users are accustomed to storing sensitive and non-sensitive data on
smartphones, since they carry them all the time. This has created a false sense of safety:
believing that everything is safe because the smartphone always stays with the owner.
Little do users know, smartphones are exposed to all kinds of attacks these days. Currently,
there is a great number of apps available for users to install and benefit from. Several of the
available apps are malicious, aiming to detect and steal the user’s information from the
smartphone without the user’s knowledge. Users unknowingly install these apps, which
qualify as malware and have malicious objectives targeting sensitive data. iOS and Android
are the two mobile operating systems used on smartphones, with an estimated 73% share
of the smartphone market, as reported in June 2021 [2]. Out of these two, Android is the
open-source operating system. This flexibility and openness has proved to be the major
reason for the rich contribution of community developers. This has created a healthy
ecosystem where Android has flourished in terms of functionality and stability. However,

Sensors 2022, 22, 7928. https://doi.org/10.3390/s22207928 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22207928
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0416-657X
https://orcid.org/0000-0003-0959-2930
https://orcid.org/0000-0003-1275-2050
https://doi.org/10.3390/s22207928
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22207928?type=check_update&version=1

Sensors 2022, 22, 7928 2 of 18

at the same time, this openness has been a major cause for the attraction of developers to
build malicious apps, known as mobile malware. These apps threaten the privacy and
security of users. As per statistics, in 2019, approximately 350,000 malware were detected
every day, and every seven seconds, a new malware was generated. These numbers clearly
demonstrate the level of threat and danger faced by smartphone users and businesses. Mal-
ware occupies device resources and disturbs their normal functioning. Apart from stealing
users’ data and compromising their privacy, it can monitor users’ behavior and learns to
cause deeper damage. Thus, it is very important to have effective countermeasures.

At a high level, two techniques [3,4] are used for performing analysis as part of
the malware detection process. The first one is a static analysis that performs app code
analysis without running it. The focus of this kind of analysis is on understanding the
structure of the code along with the functionality [5] it performs. This analysis technique is
efficient; however, it can only detect known malware and is unable to provide zero-day
protection. In addition, this technique is not able to detect malware that uses obfuscation.
Dynamic analysis, on the other hand, observes the behavior of the app when it runs. Being
more effective, dynamic analysis can detect unknown malware as well, by learning from
observation. The downside of this kind of analysis is that it requires a large amount of
resources which, generally, is not feasible for mobile devices. To obtain the benefit of
dynamic analysis and overcome this resource requirement issue, malware detection hosted
in the cloud as a service [6,7] is proposed. To train the malware detection model, a large
amount of data is required from the app providers, while making sure that no sensitive
data is shared, in order to protect the user’s privacy. This is one of the greatest challenges.

Permissions have an important role to play in an app’s functioning. In earlier versions
of Android, users were forced to allow every permission required by an app at installation
time. This created a security concern as, unknowingly, users would allow unnecessary
permissions as well. The later versions of Android added dynamic permissions man-
agement where the app asks for required permissions at the runtime. The user can then
allow or deny the permissions. Since permissions are the first thing any malware will try
to exploit, it is proven to be effective to use for malware detection. This study analyzes
studies that have been done for malware detection using permissions analysis for Android.
Research questions have been defined and answered using a systematic literature review
(SLR) protocol. Relevant publications have been searched from various scientific databases.
These publications were analyzed through different criteria to include or exclude, along
with assessing the quality. Any publication that did not fulfill the selection criteria and
quality assessment was discarded, and only high-quality papers were made part of the
data extraction and analysis.

The rest of the paper is structured as follows: Section 2 explains the Background.
Section 3 shows the Related Work. Section 4 presents the methodology of the research. This
section has further sub-sections. Section 4.1 concerns the review protocol. The defined
research questions are outlined in Section 4.2. Section 4.3 details the search strategy used
to search databases for relevant articles. Exclusion criteria are enumerated in Section 4.5,
an assessment of article quality is done in Section 4.6, and the data synthesis process, which
is used in the extraction of data and formulating of the result, is explained in Section 4.7,
Section 4 is dedicated to discussing the results and Section 5 comprehensively discusses
the presented answers to research questions and validity threats. Lastly, the conclusion is
presented in Section 6.

2. Background
2.1. Malware and Android Apps

By design, every Android app runs within its security boundary. It cannot access
data related to other apps or perform sensitive operations by default. The permissions
mechanism governs what an app can do. These permissions are declared in the Android-
Manifext.xml file for every app. Figure 1 shows a typical AndroidManifest.xml file with
declared permissions for the app. In older versions of Android (i.e., earlier than Android

Sensors 2022, 22, 7928 3 of 18

6.0), the user had to accept and allow all permissions required by the app during the
installation time. This was a flaw in a way because a user could unknowingly allow a long
list of permissions just for the sake of even trying out an app. Android versions 6.0 and
greater improved the permissions architecture, where permissions are requested at runtime
when required by the app. The user has the ability to either allow or deny.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 18

mechanism governs what an app can do. These permissions are declared in the An-
droidManifext.xml file for every app. Figure 1 shows a typical AndroidManifest.xml file
with declared permissions for the app. In older versions of Android (i.e., earlier than An-
droid 6.0), the user had to accept and allow all permissions required by the app during
the installation time. This was a flaw in a way because a user could unknowingly allow a
long list of permissions just for the sake of even trying out an app. Android versions 6.0
and greater improved the permissions architecture, where permissions are requested at
runtime when required by the app. The user has the ability to either allow or deny.

Figure 1. AndroidManifext.xml showing permissions.

Since malware is also an app, it needs permission to execute malicious code (e.g.,
sending SMS at the user’s expense). Since permissions are defined using strings, these
strings are used in malware detection. By leveraging the defined permissions, apps are
narrowed down and matched with the particular malware sample. Permissions are the
first door that needs to be opened for typical malware to get hold of the device. One pop-
ular app named T2Expense was removed from the Google Play Store because it was un-
necessarily accessing users’ call logs, text messages, and contacts, although it was an ex-
pense manager app.

2.2. Machine Learning
Machine learning (ML) is a subpart of AI (artificial intelligence), that aims at devel-

oping intelligent computer-based systems by using statistical techniques and learning
from existing datasets. ML is playing a role in many industries these days for classification
and regression tasks. ML models are trained using malware datasets and used in malware
detection techniques. ML is at the backend of almost all malware-detecting techniques.
Using both static and dynamic analysis, features are extracted from the collected data and
datasets are formed. Many datasets are publicly available [8,9] and can be modified and
enhanced to be used in building more intelligent and robust ML models.

2.3. Types of Malware
There are many different types of malware with one common objective: causing dam-

age of all possible kinds to users’ data and assets. Figure 2 shows some of the common
types, and the following is a brief description of those:

Figure 2. Malware Types.

Figure 1. AndroidManifext.xml showing permissions.

Since malware is also an app, it needs permission to execute malicious code (e.g.,
sending SMS at the user’s expense). Since permissions are defined using strings, these
strings are used in malware detection. By leveraging the defined permissions, apps are
narrowed down and matched with the particular malware sample. Permissions are the
first door that needs to be opened for typical malware to get hold of the device. One
popular app named T2Expense was removed from the Google Play Store because it was
unnecessarily accessing users’ call logs, text messages, and contacts, although it was an
expense manager app.

2.2. Machine Learning

Machine learning (ML) is a subpart of AI (artificial intelligence), that aims at develop-
ing intelligent computer-based systems by using statistical techniques and learning from
existing datasets. ML is playing a role in many industries these days for classification and
regression tasks. ML models are trained using malware datasets and used in malware
detection techniques. ML is at the backend of almost all malware-detecting techniques.
Using both static and dynamic analysis, features are extracted from the collected data and
datasets are formed. Many datasets are publicly available [8,9] and can be modified and
enhanced to be used in building more intelligent and robust ML models.

2.3. Types of Malware

There are many different types of malware with one common objective: causing
damage of all possible kinds to users’ data and assets. Figure 2 shows some of the common
types, and the following is a brief description of those:

Sensors 2022, 22, x FOR PEER REVIEW 3 of 18

mechanism governs what an app can do. These permissions are declared in the An-
droidManifext.xml file for every app. Figure 1 shows a typical AndroidManifest.xml file
with declared permissions for the app. In older versions of Android (i.e., earlier than An-
droid 6.0), the user had to accept and allow all permissions required by the app during
the installation time. This was a flaw in a way because a user could unknowingly allow a
long list of permissions just for the sake of even trying out an app. Android versions 6.0
and greater improved the permissions architecture, where permissions are requested at
runtime when required by the app. The user has the ability to either allow or deny.

Figure 1. AndroidManifext.xml showing permissions.

Since malware is also an app, it needs permission to execute malicious code (e.g.,
sending SMS at the user’s expense). Since permissions are defined using strings, these
strings are used in malware detection. By leveraging the defined permissions, apps are
narrowed down and matched with the particular malware sample. Permissions are the
first door that needs to be opened for typical malware to get hold of the device. One pop-
ular app named T2Expense was removed from the Google Play Store because it was un-
necessarily accessing users’ call logs, text messages, and contacts, although it was an ex-
pense manager app.

2.2. Machine Learning
Machine learning (ML) is a subpart of AI (artificial intelligence), that aims at devel-

oping intelligent computer-based systems by using statistical techniques and learning
from existing datasets. ML is playing a role in many industries these days for classification
and regression tasks. ML models are trained using malware datasets and used in malware
detection techniques. ML is at the backend of almost all malware-detecting techniques.
Using both static and dynamic analysis, features are extracted from the collected data and
datasets are formed. Many datasets are publicly available [8,9] and can be modified and
enhanced to be used in building more intelligent and robust ML models.

2.3. Types of Malware
There are many different types of malware with one common objective: causing dam-

age of all possible kinds to users’ data and assets. Figure 2 shows some of the common
types, and the following is a brief description of those:

Figure 2. Malware Types. Figure 2. Malware Types.

Sensors 2022, 22, 7928 4 of 18

Viruses can copy themselves and infect other computers. In addition, they can destroy
some files on a computer and can spread themselves to other devices with the help of
e-mail programs [10].

Trojans seem to have good functionalities; however, they have hidden functions that
can bypass the security layer within the system [10].

Spyware software systems are used to collect information from organizations or people
without their knowledge [10].

Ransomware software mostly encrypts the data on a computer with a key, and when
the ransom is paid, the key is sent to the user by the hacker so that the user can access
his/her data. Unless the ransom is paid, the user cannot access the data on the com-
puter [10].

Rootkit refers to the tools that are used by the attackers after the root-level access is
reached. With the help of these tools, the attacker can hide the activities done in the system
and maintain root-level access [10].

Adware (a.k.a., advertisement-supported software) creates adverts on the user screen
(mostly, on the web browser) and therefore, the developer of the adware is able to obtain
profit from these adverts [11].

3. Related Work

Our research did not come across an SLR that specifically covers and focuses on mal-
ware detection on Android using permission analysis. There are SLRs explaining analysis
techniques at a broader level, such as static analysis, hybrid analysis, etc. Pen et al. [12]
published an SLR by going through the literature which addresses static analysis techniques
for detecting malware for Android OS. The authors divided the static analysis techniques
into four categories based on application features. This was done to measure the malware
detection capabilities of static analysis. The authors mentioned that using a neural model
provides better performance than a non-neural network. In addition, as mentioned by the
authors, static analysis is proved to be effective in detecting malware, but some studies
report low potential. It has been concluded that using different categories of static analysis
together has the potential to achieve better results. Furthermore, there are still challenges
faced by static analysis techniques to effectively detect malware on the Android platform.
The authors stressed the need to develop novel techniques to alleviate these challenges.
As part of future work, the authors intend to promote guidelines to build and promote
novel techniques for better malware detection methodologies.

There is a survey paper on permission-based malware detection in Android applica-
tions [13]; however, it only focuses on five approaches and the presented work provides
very limited knowledge. A similar survey paper exists [14]; however, 13 papers were
explained very briefly in this survey study and an in-depth analysis was not performed.
Articles that address permission-based malware detection are mostly primary studies and
propose new techniques. We could not discover any SLR study that evaluates this particular
scope so far. There are other surveys or SLR studies that address the general malware
prediction models. Our SLR study is unique because we particularly focus on malware
detection using permission analysis.

4. Research Methodology

The following section explains the methodology used in this research. Figure 3 shows
the research methodology’s main steps:

Sensors 2022, 22, 7928 5 of 18Sensors 2022, 22, x FOR PEER REVIEW 5 of 18

Figure 3. Methodology flowchart.

4.1. Review Protocol
The first and most significant stage before performing research is to define the review

protocol. This was accomplished by adopting Kitchenham et al.’s study [15]. The research
questions must first be defined. Relevant scientific databases were examined as soon as
the research topics were finalized to find relevant research papers. In our study, we
searched the following databases:
 ACM
 Google Scholar
 IEEE Xplore
 Science Direct
 Scopus
 Web of Science
 Wiley

Malware detection and prevention is a much-needed area to research and generate
solutions. Therefore, there have been many studies done in this area. Some of the data-
bases used returned duplicates of research papers. All non-duplicated studies that were
found are included in our review. Later, as per the research questions defined, the data
and facts related to the topic were extracted. In the approach, at a high level, the research
questions are identified and laid out as part of review planning, followed by protocol con-
struction. The database selection comes next, where we pass the search criteria as input,
which is also known as search strings. The next step is to define the selection criteria for
primary studies. Finally, the procedure is fine-tuned to ensure that the review protocol is
appropriate.

Conducting the review happens in the second phase. This involves selecting the pub-
lications from the corresponding databases. Following the selection of articles, data and
facts were extracted, yielding information on authors, publication year and kind, and,
most importantly, information about the defined research questions. This was followed
by a data synthesis procedure, which was then utilized to discuss the articles’ relevance
in the context.

The final phase comprised documenting the results and addressing the defined re-
search questions based on the earlier phase. One of the most important parts of this phase
is to answer the defined research questions. Wherever necessary, additional studies were
searched, selected, and referenced to find the answer to the defined research questions.

4.2. Research Questions
The following five research questions are laid out for this study:

 RQ1: What challenges face the permission analysis technique in detecting Android
malware?

 RQ2: What possible methods or approaches can be used to mitigate those challenges?

Figure 3. Methodology flowchart.

4.1. Review Protocol

The first and most significant stage before performing research is to define the review
protocol. This was accomplished by adopting Kitchenham et al.’s study [15]. The research
questions must first be defined. Relevant scientific databases were examined as soon as the
research topics were finalized to find relevant research papers. In our study, we searched
the following databases:

• ACM
• Google Scholar
• IEEE Xplore
• Science Direct
• Scopus
• Web of Science
• Wiley

Malware detection and prevention is a much-needed area to research and generate
solutions. Therefore, there have been many studies done in this area. Some of the databases
used returned duplicates of research papers. All non-duplicated studies that were found
are included in our review. Later, as per the research questions defined, the data and facts
related to the topic were extracted. In the approach, at a high level, the research questions
are identified and laid out as part of review planning, followed by protocol construction.
The database selection comes next, where we pass the search criteria as input, which is also
known as search strings. The next step is to define the selection criteria for primary studies.
Finally, the procedure is fine-tuned to ensure that the review protocol is appropriate.

Conducting the review happens in the second phase. This involves selecting the
publications from the corresponding databases. Following the selection of articles, data
and facts were extracted, yielding information on authors, publication year and kind, and,
most importantly, information about the defined research questions. This was followed
by a data synthesis procedure, which was then utilized to discuss the articles’ relevance in
the context.

The final phase comprised documenting the results and addressing the defined re-
search questions based on the earlier phase. One of the most important parts of this phase
is to answer the defined research questions. Wherever necessary, additional studies were
searched, selected, and referenced to find the answer to the defined research questions.

4.2. Research Questions

The following five research questions are laid out for this study:

• RQ1: What challenges face the permission analysis technique in detecting Android
malware?

• RQ2: What possible methods or approaches can be used to mitigate those challenges?
• RQ3: How effective is this approach in the context of new and customized versions

of Android?

Sensors 2022, 22, 7928 6 of 18

• RQ4: Out of the studied solutions, which one provides the best result?
• RQ5: Which datasets are used in the primary studies?

4.3. Search Strategy

While searching the articles, the focus was to obtain the relevant papers on the topic in
which malware detection methodologies and techniques are introduced using permissions
analysis. Although there are several techniques introduced, using other aspects of the
Android platform, this SLR is focusing on permission analysis. There are several studies
published in which authors have used permissions analysis to either introduce a novel
technique or have generated improved solutions. “Android malware detection using
permissions analysis” was the first keyword used in the search. Since the abstract and
conclusion parts of every article provide a good overview, they were used to understand
the relevance of the article to our topic. Inclusion and exclusion criteria were applied for
filtering the articles. This was followed by using more combinations of search keywords
to search more articles, to ensure the inclusion of as many related articles as possible. The
following search string combinations were used:

“Android malware detection using permission analysis”;
“permission analysis Android malware”;
“permission analysis” and “Android malware detection”;
“analyzing Android app permission ” and “detecting malware”.
There were 16 related papers found. The categorized count is presented in Table 1.

Most of the papers were found and obtained in the IEEE Xplore database.

Table 1. Count of papers returned by databases.

Database Papers Count

IEEE Xplore 12

ACM 2

Scopus 2

4.4. Prisma Flow Diagram

In Figure 4, we present how the included articles were selected. For documenting the
details, we utilized the PRISMA Flow diagram.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18

 RQ3: How effective is this approach in the context of new and customized versions
of Android?

 RQ4: Out of the studied solutions, which one provides the best result?
 RQ5: Which datasets are used in the primary studies?

4.3. Search Strategy
While searching the articles, the focus was to obtain the relevant papers on the topic

in which malware detection methodologies and techniques are introduced using permis-
sions analysis. Although there are several techniques introduced, using other aspects of
the Android platform, this SLR is focusing on permission analysis. There are several stud-
ies published in which authors have used permissions analysis to either introduce a novel
technique or have generated improved solutions. “Android malware detection using per-
missions analysis” was the first keyword used in the search. Since the abstract and con-
clusion parts of every article provide a good overview, they were used to understand the
relevance of the article to our topic. Inclusion and exclusion criteria were applied for fil-
tering the articles. This was followed by using more combinations of search keywords to
search more articles, to ensure the inclusion of as many related articles as possible. The
following search string combinations were used:

“Android malware detection using permission analysis”;
“permission analysis Android malware”;
“permission analysis” and “Android malware detection”;
“analyzing Android app permission ” and “detecting malware”.
There were 16 related papers found. The categorized count is presented in Table 1.

Most of the papers were found and obtained in the IEEE Xplore database.

Table 1. Count of papers returned by databases.

Database Papers Count
IEEE Xplore 12

ACM 2
Scopus 2

4.4. Prisma Flow Diagram
In Figure 4, we present how the included articles were selected. For documenting the

details, we utilized the PRISMA Flow diagram.

Figure 4. Identification of studies. Figure 4. Identification of studies.

Sensors 2022, 22, 7928 7 of 18

4.5. Exclusion Criteria

The identified studies went through the application of exclusion criteria to make sure
that irrelevant papers were excluded for this particular SLR. The following details the
applied criteria:

• Publications that are not directly related to permission analysis techniques regarding
malware detection

• Publications in a language other than English
• Publications that are duplicates
• Publications that have their abstract available only and the full text is not available
• Secondary studies or review papers
• Publication year earlier than 2011

Considering the nature of the topic, many publications were available. This research
area is active to improve malware detection accuracy and robustness. Figure 5 shows the
distribution of selected papers by year.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 18

4.5. Exclusion Criteria
The identified studies went through the application of exclusion criteria to make sure

that irrelevant papers were excluded for this particular SLR. The following details the ap-
plied criteria:
 Publications that are not directly related to permission analysis techniques regarding

malware detection
 Publications in a language other than English
 Publications that are duplicates
 Publications that have their abstract available only and the full text is not available
 Secondary studies or review papers
 Publication year earlier than 2011

Considering the nature of the topic, many publications were available. This research
area is active to improve malware detection accuracy and robustness. Figure 5 shows the
distribution of selected papers by year.

Figure 5. Publications’ distribution per year.

The relevant data was taken from articles and synthesized in such a way that the five
research questions were effectively addressed. A two-part emphasis was in place when
the data was gathered from each article. First, we made sure that the studies we chose met
the requirements, and second, that the data we collected could answer research questions.
The retrieved and synthesized data were utilized to develop responses to the research
questions, and the findings are presented and discussed in the corresponding sections.

4.6. Quality Score
After retrieving the publications, they were subjected to a procedure in which the

quality of each article was evaluated. This was done to ensure that only high-quality pub-
lications were included in this review. The quality evaluation was based on assessment
questions derived from a study done by Kitchenham et al. [15].

The quality score was calculated for each publication based on the answer to each
question as per the following:
 1 (if the answer is yes)
 0 (if the answer is no)
 0.5 (if the answer is somewhat)

The assessment was comprised of the following questions:
1. Does the study state the aims clearly?
2. Has the scope of the study been clearly defined?
3. Are the variables used in the study reliable?
4. Is the process of research sufficiently covered by the documentation of the study?
5. Has the study effectively answered the questions defined?
6. Does the study result in obstructive findings?

Figure 5. Publications’ distribution per year.

The relevant data was taken from articles and synthesized in such a way that the five
research questions were effectively addressed. A two-part emphasis was in place when the
data was gathered from each article. First, we made sure that the studies we chose met the
requirements, and second, that the data we collected could answer research questions. The
retrieved and synthesized data were utilized to develop responses to the research questions,
and the findings are presented and discussed in the corresponding sections.

4.6. Quality Score

After retrieving the publications, they were subjected to a procedure in which the
quality of each article was evaluated. This was done to ensure that only high-quality
publications were included in this review. The quality evaluation was based on assessment
questions derived from a study done by Kitchenham et al. [15].

The quality score was calculated for each publication based on the answer to each
question as per the following:

• 1 (if the answer is yes)
• 0 (if the answer is no)
• 0.5 (if the answer is somewhat)

The assessment was comprised of the following questions:

1. Does the study state the aims clearly?
2. Has the scope of the study been clearly defined?
3. Are the variables used in the study reliable?
4. Is the process of research sufficiently covered by the documentation of the study?

Sensors 2022, 22, 7928 8 of 18

5. Has the study effectively answered the questions defined?
6. Does the study result in obstructive findings?
7. Does the study list major outcomes related to reliability and soundness?
8. Does the conclusion coincide with the aims of the study?

Figure 6 shows the quality score distribution of the papers. The papers that scored 4 or
more, which is the threshold value for inclusion in the paper, are part of the study. In this
study, all identified papers were included as those are of high quality.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 18

7. Does the study list major outcomes related to reliability and soundness?
8. Does the conclusion coincide with the aims of the study?

Figure 6 shows the quality score distribution of the papers. The papers that scored 4
or more, which is the threshold value for inclusion in the paper, are part of the study. In
this study, all identified papers were included as those are of high quality.

Figure 6. Distribution of the papers quality score basis.

4.7. Data Synthesis
To answer the research questions, data synthesis was performed. This was done by

aggregating the collected data to extract the required facts. Qualitative data analysis was
performed to answer some of the research questions, such as the main challenges faced
by malware detection techniques using permission analysis. On the other hand, some
questions required us to perform quantitative data synthesis, such as the possible solution
to mitigate these challenges. For identifying these solutions, we performed qualitative
data synthesis.

5. Results
In this section, the response to all five research questions is presented. In its subsec-

tion, the response is discussed. Table 2 shows the selected primary papers with extracted
data, such as analysis technique used, machine learning classifier, tools, and year of pub-
lication.

Table 2. Selected primary study papers.

Ref. Title Analysis Tech. Used
Machine Learning

Classifier(s)
Used/Developed

Tools Used (If
Any)

Year

[16]

Droid permission miner:
Mining prominent

permissions for Android
malware analysis

Static Analysis Naïve Bayes, AdaBoost,
Random forest

Androguard (to
generate human-
readable manifest

file)

2014

[17]
Android malware detection
with contrasting permission

patterns

Hybrid permission
profile (normal,

malware, common)
Enclamald

Weka (for classifier
comparison)

2014

Figure 6. Distribution of the papers quality score basis.

4.7. Data Synthesis

To answer the research questions, data synthesis was performed. This was done by
aggregating the collected data to extract the required facts. Qualitative data analysis was
performed to answer some of the research questions, such as the main challenges faced
by malware detection techniques using permission analysis. On the other hand, some
questions required us to perform quantitative data synthesis, such as the possible solution
to mitigate these challenges. For identifying these solutions, we performed qualitative
data synthesis.

5. Results

In this section, the response to all five research questions is presented. In its subsection,
the response is discussed. Table 2 shows the selected primary papers with extracted data,
such as analysis technique used, machine learning classifier, tools, and year of publication.

Table 2. Selected primary study papers.

Ref. Title Analysis Tech. Used
Machine Learning

Classifier(s)
Used/Developed

Tools Used (If Any) Year

[16]

Droid permission miner:
Mining prominent

permissions for Android
malware analysis

Static Analysis Naïve Bayes, AdaBoost,
Random forest

Androguard (to
generate

human-readable
manifest file)

2014

[17]
Android malware detection

with contrasting
permission patterns

Hybrid permission
profile (normal,

malware, common)
Enclamald Weka (for classifier

comparison) 2014

Sensors 2022, 22, 7928 9 of 18

Table 2. Cont.

Ref. Title Analysis Tech. Used
Machine Learning

Classifier(s)
Used/Developed

Tools Used (If Any) Year

[18]

Native malware detection in
smartphones with android

OS using static analysis,
feature selection and
ensemble classifiers

Static Analysis

SMO used by SVM,
Random Forest,

Random Committee
with Random Tree, and

Random Committee
with Random Forest

Android
AssetPackaging Tool

(AAPT) for
obtaining features

2016

[19]
SigPID: significant

permission identification for
android malware detection

Static Analysis SVM (Support Vector
Machine) N/A 2016

[20] Android malware detection
using permission analysis Static Analysis N/A

Apktool for
decompiling .apk

build files
2017

[21]
A Two-Layered Malware

Detection Model Based on
Permission for Android

Static Analysis Random Forest Eclipse (for java
development) 2018

[22]
API and permission-based

classification system for
Android malware analysis

Static Analysis N/A (to be used in
future work)

YARA (for identifying
malware using

pattern matching)
2018

[23]
Permission Based Malware

Detection in
Android Devices

Static Analysis Random Forest, SVM
Androguard (for

extracting
permissions)

2018

[24]
PermPair: Android

Malware Detection Using
Permission Pairs

Static Analysis N/A N/A 2019

[25]

Android Malware
Classification Based on
Permission Categories

Using Extreme
Gradient Boosting

Static Analysis XGBoost
Androguard (for

extracting permissions
from .apk files)

2020

[26]
IPDroid: Android Malware

Detection using Intents
and Permissions

Static Analysis Random Forest, SVM,
Naive Bayes

VirusTotal (to test
malicious app dataset),

Apktool (for
permission extraction)

2020

[27]

On the Effectiveness of
Application Permissions

for Android
Ransomware Detection

Hybrid (Static and
Dynamic analysis)

Random Forest (RF),
Decision Trees,

Sequential minimal
optimization algorithm

(SMO), Naive
Bayes (NB)

Apktool (to decompile
.apk file and get

manifest information)
2020

[28]

Permission-Based Approach
for Android Malware

Analysis Through
Ensemble-Based

Voting Model

Static Analysis
Random Forest,

MLP, AdaBoost, SVM,
Decision Tree

N/A 2021

[29]

A static analysis approach
for Android

permission-based malware
detection systems

Static Analysis

Random Forest, kNN,
MLP, J48, Adaboost

(Random Forest has the
highest accuracy)

WEKA (machine
learning tool for

evaluation)
2021

Sensors 2022, 22, 7928 10 of 18

Table 2. Cont.

Ref. Title Analysis Tech. Used
Machine Learning

Classifier(s)
Used/Developed

Tools Used (If Any) Year

[30]

COVID-Themed Android
Malware Analysis and

Detection Framework Based
on Permissions

Static Analysis Decision Tree,
Random Forest

Androguard (for
decompiling .apk files),

APKAnalyzer (for
permission extraction)

2022

[31]

You are what the
permissions told me!

Android malware detection
based on hybrid tactics

Hybrid (Static and
Dynamic analysis) TextCNN AHAT (for

heap analysis) 2022

The following parameters were entered, in line with the data extraction:

• The start-to-end mechanism applied by each study for malware detection
• Analysis technique used
• Machine learning classifier (used or developed if any)
• Additional tools used for the process of analysis or evaluation

Based on the facts and finding, along with analysis, the following section discusses
research questions answering:

5.1. RQ1—What Challenges Permission Analysis Technique Faces to Detect Android Malware?

Malware infections are on the rise. As per statistics, new malware makes is produced
every few seconds. In addition to this, modern malware development techniques are
producing stealthier versions that are difficult to detect. After going through all primary
studies, we concluded that there are numerous challenges preventing the development
of efficient and effective malware detection methodologies. In [16], the authors argue
that combining features to create an optimal feature vector is a challenge, as this would
provide higher accuracy. In [17], the authors have described how contrasting pattern
length presents a great challenge, because it significantly affects the cost of computing and
accuracy. Authors in [21] point out that the limitations of static analysis towards generated
fuzzy sets are issues to pay attention to in order to improve the detection process, which can
be solved by involving dynamic analysis. In [24], the authors report that correct detection of
apps with fewer or no permissions is a challenge as they evade the detection process easily.
In addition, the false positive rate (FPR) is an additional issue where several safe apps
(social media category) are wrongly classified as malicious apps because of the presence of
dangerous permissions pairs. Authors in [26] share a similar challenge, where FPR occurs
for apps with fewer permissions, which is added to the challenge of detecting malware that
uses obfuscation techniques that make them stealthier. Lastly, in [31], the authors discuss
how analyzing dead objects (garbage collection analysis) is another challenge. Malware
may leave dead objects as a trace, and this can play a significant role in its correct detection.

Having a consolidated look at the challenges yields the following enumeration of
challenges that help in wider understanding:

(a) Preserving user’s privacy during malware detection is a major challenge, no matter
what technique is followed. Malware detection with the help of analyzing permissions
can be executed in two ways: first, on the device where no information is shared
externally, and second, where necessary information is gathered from the device and
sent to an external (usually cloud-hosted) service for analysis. Since the device is
limited in resources, cloud-based service can be helpful. However, in both cases,
there is a privacy concern. In the first case, the malware analysis itself needs elevated
privileges so that it can read and decompile .apk files for the sake of permission
extraction and further analysis. In the second case, extracting information from

Sensors 2022, 22, 7928 11 of 18

the device and sending it to an external service clearly adds more weight to the
privacy concern.

(b) Since malware and clean apps might have similar permissions, it is highly likely to
end up with FP (false positives) and/or FN (false negatives), where an app is either
wrongly classified as malware or wrongly classified as a clean app. This presents
yet another challenge to generating an efficient approach to minimizing FP and
FN. Malware developers add permissions in the manifest file that are similar to a
clean app. This raises the likelihood of fooling the detection process and yielding the
wrong result.

(c) Modern malware is developed using state-of-the-art obfuscation technologies, which
help them to be even stealthier. This makes it challenging for the detection method-
ologies to work successfully. In some works in the literature, methodologies are
introduced where a hybrid approach is used. In such cases, permissions are evaluated
in more depth by analyzing the app behavior as well. However, the malware uses
obfuscation to hide various aspects of behavior, such as encrypted external communi-
cation. Due to this, dynamic analysis cannot effectively analyze the behavior of the
app in the context of declared permissions.

Although, while publishing apps on the Google Play Store, the app goes through
several checks before approval, in several instances malicious apps were still able to
pass through and were published. Google made it compulsory for app publishers to
provide information related to data safety manually [32]. Earlier, this was the permissions
section, but it has become the data safety section. The goal was to facilitate the end user’s
understanding of permissions, data collection, and usage. Clearly, there is still a high
probability that apps can pass through it and be published on the store. In this scenario,
the Play Store becomes dependent on what app developers provide as a set of data safety
information. According to [33], several developers and app providers were traced lying
regarding the permissions their app needed on one of the leading app stores, which is also
considered the most secure and sage. This stresses the importance of permissions analysis,
even in the presence of these platforms, for malicious detection.

5.2. RQ2—What Possible Methods or Approaches Can Be Used to Mitigate Those Challenges?

Considering the diverse nature of devices and the availability of free apps, the need for
effective malware detection has grown stronger than ever. As described in RQ1, malware
detection meets several challenges. Research is being conducted to mitigate those challenges
and produce an effective and robust solution. Out of the mentioned challenges, accuracy
is the first concerning one. Accuracy can be affected when FP or FN are faced as a result
of the malware detection process. Literature has suggested combining static and dynamic
analysis to mitigate this challenge. Since dynamic analysis for malware detection observes
the app behavior, it can do a better job when combined with static analysis. However, this
leads to a second challenge, which is computing cost. Dynamic analysis requires more
computation resources on the device. This could lead to other functioning issues for the
device itself. Different studies recommend using dynamic analysis externally by sharing
the observed information from the device to an external server. This way, the device would
not come under a heavy load of processing. Interestingly, this leads to the third challenge
that is discussed in RQ1, which is user privacy. There have been many methodologies and
techniques introduced in the literature which detect malware on the Android platform and
preserve the user’s privacy at the same time. Although these methodologies use different
approaches than permission-based analysis, the objective is common.

Cui et al. [34] proposed PPMDroid, which is a system to detect malware on Android
using static and dynamic analyses, while at the same time respecting the privacy of users’
data, phone vendors, and security service providers (SPs). In terms of static analysis, key
behavioral footprint features in the app codes, such as remote calls, permission granting
requests, constant strings, and package names, are hashed and shared with SPs. SPs
compare the received hashes’ values with the malware signatures’ hashes to verify the

Sensors 2022, 22, 7928 12 of 18

safety of the applications. Additionally, the similarity of an APK code and resource files
are compared with malware samples using hash similarity techniques to detect malicious
apps. The usage of one-way hash schemes ensures that phone vendors are not required
to needlessly share inner APK code files with SPs to verify their integrity. For dynamic
analysis, an encrypted database of malware signatures is created by SPs using secure
searchable symmetric encryption (SSE) techniques and stored locally on a user handset.
The database is essentially a hash table that stores different malware information, signatures,
and behaviors. Next, PPMDroid dynamically analyzes the runtime behaviors of running
applications and securely queries the local signatures database to compare the behaviors
against malicious ones. This scheme ensures that the application’s code is never shared
remotely with security services. Similarly, SPs’ malware signatures are preserved and not
exposed to other parties.

Kucuk et al. [35] designed BigBing, which is a cloud-based malware architecture that
respects individuals’ privacy while simultaneously employing a scalable big data approach
that can scale efficiently with a voluminous number of users’ data. At the core of BigBing is
a frontend gateway web interface that users can access to share a list of binary samples with
the system. The collection of binary executables is stored in a big data cluster using Hadoop
Distributed File System (HDFS). To protect users’ privacy, users are only required to upload
partial chunks of their binary samples, which cannot be used to infer sensitive information.
Only when distinct chunks of the same binary file are shared by different users can the
server reassemble the whole binary file, in which case it is ensured that no user-specific
data exists in the file, since it has been assembled from different sources. To share binary
files, different users collaboratively contribute different binary chunks by pushing them on
a blockchain. At the big data cluster where binary executables are assembled successfully,
Apache Cassandra and Apache Spark are used to extract and store relevant features of
those binary samples, which are used later to train a classifier for detecting malware.

Hsu et al. [36] proposed a decentralized architecture for training a malware detection
model, using federated learning by distributing the task of model training over many
collaborating devices while preserving the raw data of each device. Static analysis is
performed on a collection of decompiled APK source files as well as related meta-data to
extract key information such as requested permissions, API calls, application categories,
and descriptions. These key data are encoded as feature vectors to be inputted to a federated
learning model based on SVM. To achieve privacy-preserving, federated model training
utilizes secure multiparty computation SMPC techniques with additive secrete sharing.
The model data is broken into secret shards that are shared securely between the mobile
clients. Each client performs local training and exchanges a local model with a server. The
server securely computes an aggregated global model, which is sent back to the mobile
clients to classify mobile applications based on the existence of malware.

Wei et al. [37] introduced EPMDroid, which is a platform that leverages Intel SGX to
guard against Android malware in a privacy-respecting manner. SGX are types of hardware-
based trusted execution environments in which an arbitrary program can be executed in
isolated and secure environments without compromising its confidentiality, even against
privileged access such as OS and BIOS processes. Through SGX, the integrity of a program
can be verified while respecting the privacy of the program code and data. SGX suffers
from limited memory spaces which limit the amount of data that can be processed at one
time without performing extensive I/O operations with a storage component. To address
this issue, the authors proposed employing cuckoo filters that can extract a more compact
collection of features from the training dataset and store it within CuckooTable, which
are hash tables with highly efficient memory spaces. The core of the EPMDroid system
consists of applications data providers ADP, mobile devices MD, and malware detection
service providers MDSP. ADPs (e.g., app stores) are responsible for submitting new apps to
MDSPs, which process and store them in secure SGX enclaves for model training. Similarly,
MDs invokes the services of MDSPs to verify the integrity of running apps by conducting
inference in secure SGX enclaves.

Sensors 2022, 22, 7928 13 of 18

5.3. RQ3—How Effective Is This Approach in the Context of New and Customized Versions
of ANDROID?

Android 1.0 was released in 2008 as the first public version for the devices. Since then,
many new versions have been released by the vendor. These contain important updates,
security patches, and other enhancements. As the devices kept on evolving in terms of
capabilities and power, Android kept pace by adding the required enhancements to use
that level of power the devices offer [38]. Clearly, using the newly introduced feature
over time was bound to new permissions assigned to apps. This implies that the Android
future would bring more features and services tied to new permissions. Malware could use
those new permissions, along with API calls, to exploit the Android platform in the same
way [39]. Equivalently, malware detection methodologies would need to take care of those
new permissions by studying their contribution to malicious actions taken by malware.
Since permissions are interrelated, newly introduced permissions could lead to some major
changes in some of the existing methodologies in the literature.

Since Android is open source [40], it can be customized as required. There are certain
brands of Android devices on the market that use a customized version of Android. One
example is the case of an Android phone in which certain Android services from the
vendor are not available due to some restrictions. These restrictions are imposed by the
Android vendor. This forced the phone manufacturer to produce a modified version of
Android because it holds a significant smartphone market share. There could be similar
cases in the future due to similar or different reasons. However, since the foundation
of the Android OS remains the same, there is no change in permissions mechanisms.
There is one concern, however: the services that are not allowed by the Android OS on
certain phone manufacturers’ devices would force the phone manufacturers to provide
an alternative solution (with the same functionality). Those alternative services could be
similar in functioning but might require different permission sets that are only required
on such specific devices. This could result in the possibility of using a sparse permissions
combination, which would make malware detection even more difficult on those devices
where the customized version of Android OS is running.

5.4. RQ4—Out of the Studied Solutions, Which One Provides the Best Results?

Almost all primary studies which were analyzed for this SLR use accuracy as one
common metric to assess the proposed methodology. Several studies showed over 90%
accuracy during the evaluation phase. However, at the same time, it was mentioned in
the studies that there is a high chance of FP and FN due to various factors. These factors
are methodology-specific and discussed in each paper specifically. Some of the studies
use other metrics as well, such as F1 Score and AUC (area under curve), but for the sake
of a unified answer to this RQ, we would consider accuracy as the assessment metric.
Figure 7 shows the accuracy chart for primary studies (except [22], where accuracy was
not reported).

As shown in Figure 6, almost all studies were able to achieve over 80% accuracy level.
Table 3 shows the malware detection accuracy reported by each study. No accuracy was
reported in [22].

As shown in Figure 6 and Table 3 [31], was able to achieve the highest accuracy (99.80).
In addition to the highest accuracy, the authors of [31] have also reported the robustness of
the proposed solution against techniques that use permissions abuse and obfuscation.

Sensors 2022, 22, 7928 14 of 18

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18

security patches, and other enhancements. As the devices kept on evolving in terms of
capabilities and power, Android kept pace by adding the required enhancements to use
that level of power the devices offer [38]. Clearly, using the newly introduced feature over
time was bound to new permissions assigned to apps. This implies that the Android fu-
ture would bring more features and services tied to new permissions. Malware could use
those new permissions, along with API calls, to exploit the Android platform in the same
way [39]. Equivalently, malware detection methodologies would need to take care of
those new permissions by studying their contribution to malicious actions taken by mal-
ware. Since permissions are interrelated, newly introduced permissions could lead to
some major changes in some of the existing methodologies in the literature.

Since Android is open source [40], it can be customized as required. There are certain
brands of Android devices on the market that use a customized version of Android. One
example is the case of an Android phone in which certain Android services from the ven-
dor are not available due to some restrictions. These restrictions are imposed by the An-
droid vendor. This forced the phone manufacturer to produce a modified version of An-
droid because it holds a significant smartphone market share. There could be similar cases
in the future due to similar or different reasons. However, since the foundation of the
Android OS remains the same, there is no change in permissions mechanisms. There is
one concern, however: the services that are not allowed by the Android OS on certain
phone manufacturers’ devices would force the phone manufacturers to provide an alter-
native solution (with the same functionality). Those alternative services could be similar
in functioning but might require different permission sets that are only required on such
specific devices. This could result in the possibility of using a sparse permissions combi-
nation, which would make malware detection even more difficult on those devices where
the customized version of Android OS is running.

5.4. RQ4—Out of the Studied Solutions, Which One Provides the Best Results?
Almost all primary studies which were analyzed for this SLR use accuracy as one

common metric to assess the proposed methodology. Several studies showed over 90%
accuracy during the evaluation phase. However, at the same time, it was mentioned in the
studies that there is a high chance of FP and FN due to various factors. These factors are
methodology-specific and discussed in each paper specifically. Some of the studies use
other metrics as well, such as F1 Score and AUC (area under curve), but for the sake of a
unified answer to this RQ, we would consider accuracy as the assessment metric. Figure
7 shows the accuracy chart for primary studies (except [22], where accuracy was not re-
ported).

Figure 7. Reported accuracy: ([16–21,23–31]). Figure 7. Reported accuracy: ([16–21,23–31]).

Table 3. Accuracy that was reported by each study.

Ref. Title Accuracy(%)

[16] Droid permission miner: Mining prominent permissions for Android
malware analysis 82.48

[17] Android malware detection with contrasting permission patterns 94.38

[18] Native malware detection in smartphones with android OS using static analysis,
feature selection and ensemble classifiers 96.26

[19] SigPID: significant permission identification for android malware detection 93.62

[20] Android malware detection using permission analysis 82.33

[21] A Two-Layered Malware Detection Model Based on Permission for Android 83.60

[22] API and permission-based classification system for Android malware analysis NA (not reported)

[23] Permission Based Malware Detection in Android Devices 93

[24] PermPair: Android Malware Detection Using Permission Pairs 95.44

[25] Android Malware Classification Based on Permission Categories Using Extreme
Gradient Boosting 75.55

[26] IPDroid: Android Malware Detection using Intents and Permissions 94.73

[27] On the Effectiveness of Application Permissions for Android Ransomware Detection 96.90

[28] Permission-Based Approach for Android Malware Analysis Through
Ensemble-Based Voting Model 99.3

[29] A static analysis approach for Android permission-based malware detection systems 91.60

[30] COVID-Themed Android Malware Analysis and Detection Framework Based
on Permissions 83

[31] You are what the permissions told me! Android malware detection based on
hybrid tactics 99.80

5.5. RQ5—Which Datasets Were Used in the Primary Studies?

Table 4 shows the datasets which were used in the primary studies.

Sensors 2022, 22, 7928 15 of 18

Table 4. Datasets used in primary studies.

Ref. Dataset(s) Used

[16] Contagiodump

[17] Custom dataset was developed using apps downloaded from SlideME and Pandaapp. In addition, a dataset
published by Zhou et al. [41] was used

[18] Derbin

[19] Dataset was custom developed after downloading 5494 randomly selected apps from Google Play. The article does
not state the availability or other details about this dataset

[20] Malgenome project and Contagio

[21] Datasets collected from Baidu application market and North Carolina State University’s Android Malware Genemo
Project

[22] N/A (future works would include using machine learning)

[23] AMD Projects

[24] Genome, Derbin, Koodous, Contagio, PwnZen

[25] Koodous

[26] Genome, Derbin, Koodous

[27] Dataset-R (from HelDroid, RansomProper, Virus Total, and Koodoud)Dataset-B (from Google Play)

[28] Derbin, MalGenome

[29] Drebin, Androzoo

[30] The authors collected COVID-related apps from different sources including Google Play and GitHub, and the
dataset was custom-created using feature elimination techniques. The dataset has not been released for public use.

[31] As reported by the authors, the dataset was custom-made after collecting and processing more than 12,364 malware
apps and 9344 clean apps from Google Play. The dataset has not been released for public use.

6. Discussion and Threats to Validity

This section is dedicated to general discussion and explaining possible validity threats.

6.1. General Discussion

This SLR systematically reviews the literature on Android malware detection using
permission analysis. The main aim was to identify the challenges, proposed solutions, and
assessment of the proposed solutions, based on reported metrics. Additionally, some of
the mitigation techniques were studied and included in the review along with datasets
used in the primary studies. The results were compiled to effectively answer the research
questions. Identified challenges could pave the way for further research and improved
solutions. Enlisting the datasets used along with machine learning classifier and accuracy
would set a clear direction to move into for further research.

Using a hybrid approach (static and dynamic analyses) has proved to be more effective,
but computation cost is another major issue. To deal with computation costs, solutions
are suggested to gather data from the user’s device and send it to an external service for
analysis. This would alleviate the cost burden on the user’s device.

Another challenge in malware detection is preserving users’ privacy during the process.
Ensuring that the user’s privacy is intact increases the credibility of the proposed solutions.
Increased awareness of users about cyber security has put increased focus on coming up
with privacy-ensured solutions. This SLR has also looked at some of the proposed solutions
which focus on users’ privacy regarding malware detection.

Another interesting research outlook for malware detection is the use of federated
learning (also known as collaborative learning) [42,43] approaches. In traditional machine
learning, the datasets are uploaded to a central server, and training is performed using
the datasets on this server. However, in federated learning, the algorithm is trained across
several edge devices or servers that keep the local samples. With the help of federated

Sensors 2022, 22, 7928 16 of 18

learning, data sharing is not required and several stakeholders can work on building a
common model. As such, data privacy and data security issues are handled adequately.
This type of privacy-preserving federated learning model can protect user data and does
not leak user privacy. When the performance is comparable with the centralized models,
federated learning-based models must be preferred due to privacy concerns.

Cloud infrastructure as a service (IaaS) can be also vulnerable to malware attacks
and, therefore, different techniques using deep learning algorithms, such as convolutional
neural networks (CNN), were previously developed for the detection of malware in cloud
IaaS [44]. If an Android mobile app uses such a malicious IaaS platform for storage or
networking, the mobile app will be also affected. As such, the security of IaaS platforms is
also crucial.

These days, ransomware is the most popular, threatening, and malicious type of
malware [45]; therefore, more specialized malware prediction models are needed for this
type of malware. There are also recent research studies on the use of deep learning-driven
image-based malware detection techniques [46–48]. These studies help in preserving user
privacy and allow researchers to apply state-of-the-art image analysis methods to detect
malware signatures. These types of advanced models can improve the performance of the
prediction models.

6.2. Threats to Validity

There may have been some articles missing due to the lack of synonyms that may
have been used in the search. Some observations may have been influenced, because some
terminologies were employed differently in different articles. Because all authors were
involved in the process and a consensus was formed when analyzing the papers, possible
bias in selecting papers was reduced. To lessen the risk of conclusion validity, conclusions
were derived by the authors based on discussions and general understanding; as a result,
the individual foundation on which results were interpreted was reduced in this study.

7. Conclusions

This review investigates the literature about different methodologies used for Android
malware detection using permissions analysis. The machine learning classifiers used with
reported accuracy were analyzed along with the datasets used. Static and dynamic analyses
are used for detecting malware. The studies have shown that static analysis is efficient in
terms of performance, but it does not ensure comprehensive detection, as it is not capable
of observing the app behavior, whereas dynamic analysis is more effective but is resource-
consuming. Some of the studies are using a hybrid approach effectively, achieving the
highest accuracy and, at the same time, ensuring that the computation cost remains low.

Obtaining FP and FN during the detection process is another issue that must be further
researched. Malware can ask for normal permissions to disguise and fool the detection
process and, at the same time, clean apps can be wrongly classified as malware because
they ask for sensitive permissions. Proposed solutions have attempted to tackle this using
different approaches, and there have been good results. However, as time passes, more
malware is appearing with new disguising techniques that present a major challenge.

As part of future work, the outcomes of this SLR would be enhanced by focusing on
the role of deep learning in malware detection on Android, along with privacy-preserving
methodologies for users.

Author Contributions: Conceptualization: A.E. and C.C.; data curation: A.E.; formal analysis: A.E.,
C.C. and A.M.; investigation: A.E., C.C. and A.M.; methodology: A.E., C.C. and A.M.; project
administration: C.C.; resources: A.E., C.C. and A.M.; supervision: C.C.; validation: A.E., C.C. and
A.M.; writing—original draft: A.E., C.C. and A.M.; writing—review and editing: A.E., C.C. and A.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Molde University College—Specialized University in
Logistics, Norway, with the support of the Open Access fund.

Sensors 2022, 22, 7928 17 of 18

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Authors thank their universities for scientific database subscriptions and infras-
tructure support that enabled this collaborative research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Statista: Number of Smartphone Users Worldwide from 2016 to 2021. 2021. Available online: https://www.statista.com/

statistics/330695/number-of-smartphone-users-worldwide (accessed on 14 June 2022).
2. Statista, Mobile Operating Systems’ Market Share Worldwide from January 2012 to June 2021. 2021. Available online: https://www.

statista.com/statistics/272698/global-marketshare-held-by-mobile-operating-systems-since-2009 (accessed on 14 June 2022).
3. Faruki, P.; Bharmal, A.; Laxmi, V.; Ganmoor, V.; Gaur, M.S.; Conti, M.; Rajarajan, M. Android security: A survey of issues, malware

penetration, and defenses. IEEE Commun. Surv. Tutor. 2014, 17, 998–1022. [CrossRef]
4. Yan, P.; Yan, Z. A survey on dynamic mobile malware detection. Softw. Qual. J. 2018, 26, 891–919. [CrossRef]
5. Omer, M.A.; Zeebaree, S.R.; Sadeeq, M.A.; Salim, B.W.; Mohsin, S.; Rashid, Z.N.; Haji, L.M. Efficiency of malware detection in

android system: A survey. Asian J. Res. Comput. Sci. 2021, 2, 59–69. [CrossRef]
6. Ding, W.; Hu, R.; Yan, Z.; Qian, X.; Deng, R.H.; Yang, L.T.; Dong, M. An extended framework of privacy-preserving computation

with flexible access control. IEEE Trans. Netw. Serv. Manag. 2019, 17, 918–930. [CrossRef]
7. Ding, W.; Yan, Z.; Deng, R.H. Privacy-preserving data processing with flexible access control. IEEE Trans. Dependable Secur.

Comput. 2017, 17, 363–376. [CrossRef]
8. Android Malware Dataset for Machine Learning. Available online: https://www.kaggle.com/datasets/shashwatwork/android-

malware-dataset-for-machine-learning (accessed on 14 June 2022).
9. CICMalDroid 2020. Available online: https://www.unb.ca/cic/datasets/maldroid-2020.html (accessed on 14 June 2022).
10. Glossary|NIST. Available online: https://www.nist.gov/itl/smallbusinesscyber/cybersecurity-basics/glossary (accessed on

1 September 2022).
11. What Is Adware. Available online: https://www.kaspersky.com/resource-center/threats/adware (accessed on 1 September 2022).
12. Pan, Y.; Ge, X.; Fang, C.; Fan, Y. A systematic literature review of android malware detection using static analysis. IEEE Access

2020, 8, 116363–116379. [CrossRef]
13. Jogsan, S. A Survey on Permission Based Malware Detection in Android Applications. Int. J. Eng. Res. 2020, 9. Available online:

https://www.ijert.org/volume-09-issue-04-april-2020 (accessed on 14 June 2022).
14. Mohana, M.; Jagatheesan, S.M. Survey on Permission Based Android Malware Detection Techniques. IJEDR 2019, 7, 3. Available

online: https://www.ijedr.org/papers/IJEDR1903136.pdf (accessed on 14 June 2022).
15. Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University: Keele, UK, 2004; pp. 1–26.
16. Aswini, M.; Vinod, P. Droid permission miner: Mining prominent permissions for Android malware analysis. In Proceedings of

the Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014), Chennai,
India, 17–19 February 2014; pp. 81–86. [CrossRef]

17. Xiong, P.; Wang, X.; Niu, W.; Zhu, T.; Li, G. Android malware detection with contrasting permission patterns. China Commun.
2014, 11, 1–14. [CrossRef]

18. Morales-Ortega, S.; Escamilla-Ambrosio, P.J.; Rodriguez-Mota, A.; Coronado-De-Alba, L.D. Native malware detection in
smartphones with android OS using static analysis, feature selection and ensemble classifiers. In Proceedings of the 2016 11th
International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 18–21 October 2016; pp. 1–8.
[CrossRef]

19. Sun, L.; Li, Z.; Yan, Q.; Srisa-an, W.; Pan, Y. SigPID: Significant permission identification for android malware detection.
In Proceedings of the 2016 11th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA,
18–21 October 2016; pp. 1–8. [CrossRef]

20. Shahriar, H.; Islam, M.; Clincy, V. Android malware detection using permission analysis. SoutheastCon 2017, 2017, 1–6. [CrossRef]
21. Lu, T.; Hou, S. A Two-Layered Malware Detection Model Based on Permission for Android. In Proceedings of the 2018 IEEE

International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 18–20 August 2018;
pp. 239–243. [CrossRef]

22. Park, J.; Chun, H.; Jung, S. API and permission-based classification system for Android malware analysis. In Proceedings of
the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 1–12 October 2018; pp. 930–935.
[CrossRef]

23. Ilham, S.; Abderrahim, G.; Abdelhakim, B.A. Permission Based Malware Detection in Android Devices. In Proceedings of the 3rd
International Conference on Smart City Applications, Tetouan, Morocco, 10–11 October 2018.

24. Arora, A.; Peddoju, S.K.; Conti, M. PermPair: Android Malware Detection Using Permission Pairs. IEEE Trans. Inf. Forensics Secur.
2020, 15, 1968–1982. [CrossRef]

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://www.statista.com/statistics/272698/global-marketshare-held-by-mobile-operating-systems-since-2009
https://www.statista.com/statistics/272698/global-marketshare-held-by-mobile-operating-systems-since-2009
http://doi.org/10.1109/COMST.2014.2386139
http://doi.org/10.1007/s11219-017-9368-4
http://doi.org/10.9734/ajrcos/2021/v7i430189
http://doi.org/10.1109/TNSM.2019.2952462
http://doi.org/10.1109/TDSC.2017.2786247
https://www.kaggle.com/datasets/shashwatwork/android-malware-dataset-for-machine-learning
https://www.kaggle.com/datasets/shashwatwork/android-malware-dataset-for-machine-learning
https://www.unb.ca/cic/datasets/maldroid-2020.html
https://www.nist.gov/itl/smallbusinesscyber/cybersecurity-basics/glossary
https://www.kaspersky.com/resource-center/threats/adware
http://doi.org/10.1109/ACCESS.2020.3002842
https://www.ijert.org/volume-09-issue-04-april-2020
https://www.ijedr.org/papers/IJEDR1903136.pdf
http://doi.org/10.1109/ICADIWT.2014.6814679
http://doi.org/10.1109/CC.2014.6911083
http://doi.org/10.1109/MALWARE.2016.7888731
http://doi.org/10.1109/MALWARE.2016.7888730
http://doi.org/10.1109/SECON.2017.7925347
http://doi.org/10.1109/CCET.2018.8542215
http://doi.org/10.1109/ICOIN.2018.8343260
http://doi.org/10.1109/TIFS.2019.2950134

Sensors 2022, 22, 7928 18 of 18

25. Turnip, T.N.; Situmorang, A.; Lumbantobing, A.; Marpaung, J.; Situmeang, S.I.G. Android Malware Classification Based on
Permission Categories Using Extreme Gradient Boosting. In Proceedings of the 5th International Conference on Sustainable
Information Engineering and Technology, Malang, Indonesia, 16–17 November 2020; pp. 190–194.

26. Khariwal, K.; Singh, J.; Arora, A. IPDroid: Android Malware Detection using Intents and Permissions. In Proceedings of the
2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020;
pp. 197–202. [CrossRef]

27. Alsoghyer, S.; Almomani, I. On the Effectiveness of Application Permissions for Android Ransomware Detection. In Proceedings
of the 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), Riyadh, Saudi Arabia, 4–5 March 2020;
pp. 94–99. [CrossRef]

28. Amer, E. Permission-Based Approach for Android Malware Analysis Through Ensemble-Based Voting Model. In Proceedings
of the 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), Cairo, Egypt, 26–27 May 2021;
pp. 135–139. [CrossRef]

29. Arif, J.M.; Razak, M.F.A.; Awang, S.; Mat, S.R.T.; Ismail, N.S.N.; Firdaus, A. A static analysis approach for Android permission-
based malware detection systems. PLoS ONE 2021, 16, e0257968.

30. Manzil, H.H.R.; Naik, M.S. COVID-Themed Android Malware Analysis and Detection Framework Based on Permissions.
In Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT), Goa, India, 21–22 January 2022;
pp. 1–5. [CrossRef]

31. Wang, H.; Zhang, W.; He, H. You are what the permissions told me! Android malware detection based on hybrid tactics. J. Inf.
Secur. Appl. 2022, 66, 103159. [CrossRef]

32. Provide Information for Google Play’s Data Safety Section-Play Console Help. Available online: https://support.google.com/
googleplay/android-developer/answer/10787469?hl=en (accessed on 1 September 2022).

33. Apple’s App Store Has Many Scams—The Washington Post. Available online: https://www.washingtonpost.com/technology/
2021/06/06/apple-app-store-scams-fraud/ (accessed on 1 September 2022).

34. Cui, H.; Zhou, Y.; Wang, C.; Li, Q.; Ren, K. Towards Privacy-Preserving Malware Detection Systems for Android. In Proceedings
of the 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), Singapore, 11–13 December 2018;
pp. 545–552. [CrossRef]

35. Kucuk, Y.; Patil, N.; Shu, Z.; Yan, G. BigBing: Privacy-Preserving Cloud-Based Malware Classification Service. In Proceedings
of the 2018 IEEE Symposium on Privacy-Aware Computing (PAC), Washington, DC, USA, 26–28 September 2018; pp. 43–54.
[CrossRef]

36. Hsu, R.-H. A Privacy-Preserving Federated Learning System for Android Malware Detection Based on Edge Computing.
In Proceedings of the 2020 15th Asia Joint Conference on Information Security (AsiaJCIS), Taipei, Taiwan, 20–21 August 2020;
pp. 128–136. [CrossRef]

37. Wei, W.; Wang, J.; Yan, Z.; Ding, W. EPMDroid: Efficient and Privacy-Preserving Malware Detection Based on SGX through Data
Fusion. Information Fusion. Inf. Fusion 2022, 82, 43–57. [CrossRef]

38. Android Releases|Android Developers. Available online: https://developer.android.com/about/versions (accessed on
2 September 2022).

39. Mohamed, S.E.; Ashaf, M.; Ehab, A.; Shereef, O.; Metwaie, H.; Amer, E. Detecting Malicious Android Applications Based on
API calls and Permissions Using Machine learning Algorithms. In Proceedings of the 2021 International Mobile, Intelligent,
and Ubiquitous Computing Conference (MIUCC), Cairo, Egypt, 26–27 May 2021; pp. 1–6. [CrossRef]

40. Android Open Source Project. Available online: https://source.android.com/ (accessed on 2 September 2022).
41. Zhou, Y.; Jiang, X. Dissecting Android Malware: Characterization and Evolution. In Proceedings of the 2012 IEEE Symposium on

Security and Privacy, San Francisco, CA, USA, 24–25 May 2012; pp. 95–109. [CrossRef]
42. Lin, K.Y.; Huang, W.R. Using federated learning on malware classification. In Proceedings of the 2020 22nd International

Conference on Advanced Communication Technology (ICACT), Pyeongchang, Korea, 16–19 February 2020; pp. 585–589.
43. Alazab, M.; Rm, S.P.; Parimala, M.; Maddikunta, P.K.R.; Gadekallu, T.R.; Pham, Q.V. Federated Learning for Cybersecurity:

Concepts, Challenges, and Future Directions. IEEE Trans. Ind. Inform. 2021, 18, 3501–3509. [CrossRef]
44. McDole, A.; Abdelsalam, M.; Gupta, M.; Mittal, S. Analyzing CNN based behavioural malware detection techniques on cloud

IaaS. In International Conference on Cloud Computing; Springer: Cham, Switzerland, 2020; pp. 64–79.
45. Gera, T.; Singh, J.; Thakur, D.; Faruki, P. A semi-automated approach for identification of trends in android ransomware literature.

In International Conference on Machine Learning for Networking; Springer: Cham, Switzerland, 2020; pp. 265–283.
46. Venkatraman, S.; Alazab, M.; Vinayakumar, R. A hybrid deep learning image-based analysis for effective malware detection.

J. Inf. Secur. Appl. 2019, 47, 377–389. [CrossRef]
47. Mercaldo, F.; Santone, A. Deep learning for image-based mobile malware detection. J. Comput. Virol. Hacking Tech. 2020, 16,

157–171. [CrossRef]
48. Jian, Y.; Kuang, H.; Ren, C.; Ma, Z.; Wang, H. A novel framework for image-based malware detection with a deep neural network.

Comput. Secur. 2021, 109, 102400. [CrossRef]

http://doi.org/10.1109/WorldS450073.2020.9210414
http://doi.org/10.1109/CDMA47397.2020.00022
http://doi.org/10.1109/MIUCC52538.2021.9447675
http://doi.org/10.1109/ICONAT53423.2022.9726024
http://doi.org/10.1016/j.jisa.2022.103159
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en
https://www.washingtonpost.com/technology/2021/06/06/apple-app-store-scams-fraud/
https://www.washingtonpost.com/technology/2021/06/06/apple-app-store-scams-fraud/
http://doi.org/10.1109/PADSW.2018.8644924
http://doi.org/10.1109/PAC.2018.00011
http://doi.org/10.1109/AsiaJCIS50894.2020.00031
http://doi.org/10.1016/j.inffus.2021.12.006
https://developer.android.com/about/versions
http://doi.org/10.1109/MIUCC52538.2021.9447594
https://source.android.com/
http://doi.org/10.1109/SP.2012.16
http://doi.org/10.1109/TII.2021.3119038
http://doi.org/10.1016/j.jisa.2019.06.006
http://doi.org/10.1007/s11416-019-00346-7
http://doi.org/10.1016/j.cose.2021.102400

	Introduction
	Background
	Malware and Android Apps
	Machine Learning
	Types of Malware

	Related Work
	Research Methodology
	Review Protocol
	Research Questions
	Search Strategy
	Prisma Flow Diagram
	Exclusion Criteria
	Quality Score
	Data Synthesis

	Results
	RQ1—What Challenges Permission Analysis Technique Faces to Detect Android Malware?
	RQ2—What Possible Methods or Approaches Can Be Used to Mitigate Those Challenges?
	RQ3—How Effective Is This Approach in the Context of New and Customized Versions of ANDROID?
	RQ4—Out of the Studied Solutions, Which One Provides the Best Results?
	RQ5—Which Datasets Were Used in the Primary Studies?

	Discussion and Threats to Validity
	General Discussion
	Threats to Validity

	Conclusions
	References

