
Computers & Operations Research 148 (2022) 105986

A
0
n

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Adjusting the order crossover operator for capacitated vehicle routing
problems
Lars Magnus Hvattum
Faculty of Logistics, Molde University College, Norway

A R T I C L E I N F O

Keywords:
Vehicle routing problem
Genetic algorithm
Open source
Genetic operator

A B S T R A C T

The capacitated vehicle routing problem is a much studied combinatorial optimization problem, reflecting its
practical importance within areas such as logistics. The problem is computationally intractable, and heuristics
are commonly applied for solving large instances. Among the best heuristics available is a hybrid genetic
search that consists of mechanisms from evolutionary algorithms and a range of local search operators. This
heuristic applies an order crossover operator that takes as input two existing solutions and produces as output
a new solution for the search to explore. An open-source implementation of the heuristic is available, in which
the order crossover operator represents 1.4% of the code. This work discusses potential short-comings of the
traditional order crossover operator and proposes an adjusted operator. The new operator is evaluated on
standard benchmark test instances, and is shown to reduce the gaps to best-known solutions by 4.2%.
1. Introduction

The capacitated vehicle routing problem (CVRP) is a well-known op-
timization problem that is easy to describe and hard to solve. We are
given a depot where a fleet of identical vehicles is located, each vehicle
with a given capacity. A set of customers is also given, where each
customer has a given location and a given demand. The task is to design
routes such that each customer is visited by exactly one vehicle and
such that the sum of demands of customers visited by a vehicle does not
exceed the capacity of the vehicle. Using the locations of the customers
and the depot, travel distances can be calculated, and the goal is to
design routes that minimizes the total distance traveled.

The CVRP is computationally intractable (Lenstra and Kan, 1981),
and is frequently solved using heuristic algorithms. Some heuristics
for the CVRP are based on genetic algorithms, a metaheuristic that
has proven effective for dealing with a wide range of optimization
problems (Reeves, 2010). However, for a long time no effective genetic
algorithm was known for solving the CVRP, and Gendreau et al. (2002)
concluded that, based on scarce results, genetic algorithms were not
competitive for solving CVRPs. Prins (2004) changed this perspective
by creating a successful method. In his implementation, solutions are
represented as permutations of the customers visited, without including
information about trip delimiters in the encoding. Decoding a permu-
tation involves inserting optimal trip delimiters, thereby reaching a
feasible solution of the CVRP. By representing solutions as a giant tour
without trip delimiters, it is possible to apply crossovers known from
the literature for solving the traveling salesman problem (TSP). Oliver
et al. (1987) had compared three permutation crossover operators for

E-mail address: hvattum@himolde.no.

the TSP. One of these was found to be superior to the others when
solving the TSP with a genetic algorithm. The superior crossover, a
generalization of an earlier ‘‘modified crossover’’ proposed by David
(1985), is known as the order crossover, or OX crossover. Prins (2004)
chose to apply the order crossover for solving CVRPs, finding it superior
to an alternative linear order crossover.

Among the most successful heuristics for various routing problems,
we currently find a hybrid genetic search that incorporates many
of the ideas put forth by Prins (2004). The first version, presented
by Vidal et al. (2012), combined population-based evolutionary search,
neighborhood-based search, and advanced population-diversity man-
agement schemes to solve vehicle routing problems with multiple
depots and multiple periods. Next, Vidal et al. (2013) focused on the
challenges of duration and time-window constraints, after which Vidal
et al. (2014) tackled the presence of an even wider range of possible
problem attributes. Later, Vidal (2022) published an open-source im-
plementation of the hybrid genetic search that specifically targeted the
CVRP.

To handle multiple periods and depots, Vidal et al. (2012) devel-
oped a specialized crossover operator called the periodic crossover with
insertions. Vidal et al. (2013) also used this when solving periodic
problems, but for non-periodic problems the OX crossover was applied.
Similarly, Vidal et al. (2014) developed another new crossover, the
assignment and insertion crossover, but still used the OX crossover,
except when the problem solved included a specific type of attribute.
vailable online 8 August 2022
305-0548/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.cor.2022.105986
Received 6 June 2022; Accepted 2 August 2022
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:hvattum@himolde.no
https://doi.org/10.1016/j.cor.2022.105986
https://doi.org/10.1016/j.cor.2022.105986
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2022.105986&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers and Operations Research 148 (2022) 105986L.M. Hvattum
When addressing the CVRP, Vidal (2022) applied the OX crossover
exclusively.

Since the work of Prins (2004), the OX crossover has been used
in many successful applications of genetic algorithms to solve vehicle
routing problems. However, it seems that no critical assessment has
been published regarding the operator’s suitability for solving the
CVRP. The aim of this paper is to point out some potentially undesirable
behaviors of the OX crossover. After this we propose an adjustment
of the OX operator, which we hypothesize may avoid some of the
undesirable behavior and thereby lead to an improved performance
of the overall heuristic. Finally, we empirically test this hypothesis on
standard benchmark test instances of the CVRP.

This research would not be feasible to execute without access to
an open-source implementation of the hybrid genetic search. While
this implementation is simple, it is still extremely powerful, and Vidal
(2022) argued that performance gains through additional operators and
method hybridizations are inexorably connected to the reduction of
conceptual simplicity. We support this claim, and therefore try to im-
prove the existing method by making minimal changes to the code base:
it is an interesting challenge to improve the performance by making as
few changes as possible, while simultaneously trying to create a deeper
understanding of what makes the method so powerful. Vidal (2022)
stated this eloquently in his concluding remarks: ‘‘the goal of heuristic
design should be to identify methodological concepts that are as simple
and effective as possible, and to properly understand the role of each
component’’.

The remainder of this paper is structured as follows. In Section 2
we summarize the state-of-the-art of heuristics for the CVRP. Section 3
provides a short summary of the hybrid genetic search and its open-
source implementation. Next, Section 4 discusses the OX crossover and
illustrates some of its potential shortcomings. Following this, two new
variants of the crossover are presented: one that aims to improve the
performance of the operator, and one that functions as an additional
benchmark. Then, Section 5 presents a computational study to empiri-
cally evaluate the three different variants of the OX operator. Finally,
conclusions are drawn in Section 6.

2. Heuristics for the capacitated vehicle routing problem

Since the CVRP was introduced by Dantzig and Ramser (1959),
much research has gone into solving the problem efficiently. For solving
the problem to proven optimality, the current best exact algorithms are
based on combining multiple mechanisms such as cut generation and
column generation, as discussed by Pecin et al. (2017) and Pessoa et al.
(2020). However, given the these methods require prohibitively long
computation times for instances with many customers, a significant
amount of research has been focusing on the development of heuristic
algorithms.

In the following, the focus is on the currently best performing
heuristics. For an overview of older contributions to the literature on
heuristics for the CVRP, we recommend the book chapter by Gendreau
et al. (2002) and the paper by Laporte (2009). When presenting the
hybrid genetic search for CVRP, Vidal (2022) evaluated the results by
comparing to six other heuristics and the original hybrid genetic search
by Vidal et al. (2012). The four best performing heuristics out of these
are discussed below, in addition to a fifth, more recent heuristic.

Subramanian et al. (2013) proposed a hybrid iterated local search
for several variants of routing problems, including the CVRP. The
method is a matheuristic that combines iterated local search and the
use of a mathematical programming solver to find a combination of
routes based on a set partitioning model. Arnold and Sörensen (2019)
presented a method called the knowledge-guided local search. The
method combines three local search techniques and uses problem-
specific knowledge to guide the search towards promising solutions.
The authors also show that the heuristic, in addition to performing
well on the CVRP, can be applied to problem variants with multiple
2

depots or multiple trips. Following this, Arnold et al. (2019) used
the knowledge-guided local search framework to solve very large-scale
instances of the CVRP.

Christiaens and Vanden Berghe (2020) developed a large neigh-
borhood search with specialized operators for removing customers
from a solution and then inserting them back. The method is called
slack induction by string removals, and also considered a hierarchical
objective including the minimization of vehicles used as a primary
target. This contrasts most research on the CVRP, which typically only
minimizes the total distance traveled. Accorsi and Vigo (2021) created
a fast iterative localized optimization algorithm to solve large-scale
instances of the CVRP. The method is based on iterated local search, but
includes novel strategies to localize and control the search. Together
with the paper, the authors made their source codes openly available.

Following the publication of the aforementioned heuristics, Vidal
(2022) presented the hybrid genetic search as adapted to the CVRP.
By measuring the performance using the gaps to best-known solu-
tions after a given time limit, the hybrid genetic search was found
to perform better than all the other methods tested. Only very early
in the search, and on certain subsets of instances, the hybrid genetic
search had a slightly worse performance than the fast iterative localized
optimization algorithm of Accorsi and Vigo (2021).

Most recently, Simensen et al. (2022) reimplemented the hybrid
genetic search while adding the operators from slack induction by
string removals (Christiaens and Vanden Berghe, 2020) as a separate
improvement method. The performance was measured in two ways:
looking at the gaps to best-known solutions after a given time limit
and also looking at the average gaps to the best-known solutions when
sampled during several points in time during the run. Two different
parameter settings were proposed by the authors, both of which led to
gaps after a given time limit that were better than the corresponding
gaps for the hybrid genetic search. Evaluated using the average gaps
during several points in time, one of the parameter settings was better
than the hybrid genetic search and one was worse.

3. Hybrid genetic search

A detailed exposition of the hybrid genetic search specialized to
the CVRP was provided by Vidal (2022). This section gives a brief
overview, so as to understand the role that the OX crossover operator
has within the method. Fig. 1 labels seven algorithmic components and
shows their interactions. This involves entering a loop that continues
until a time limit has been reached.

The first search component (A) creates a set of initial solutions.
These are simply random solutions that are improved by local search.
The set of solutions is stored, and is referred to as a population (B). The
population has two parts, consisting of feasible solutions and infeasible
solutions, respectively. When storing solutions, they are expressed in
an encoded form. This encoding is illustrated in Fig. 2 for two solutions
that differ only in the direction of travel in some of the vehicle routes.
The solutions are represented by considering the sequence of visits, but
without including any delimiters between routes. That is, solutions are
stored as a permutation of the customers only.

An iteration of the hybrid genetic search beings by selecting two
solutions from the population. This selection (3) is made using two
binary tournaments. In each binary tournament, two solutions are
selected at random, and the best solution is taken as the winner and is
thus selected. Using this technique, it can happen that the same solution
is selected as the winner in both binary tournaments.

Once two solutions have been selected, they are combined using the
OX crossover (D). This operator is discussed in more detail in Section 4.
Its application produces a new permutation of customers. However, a
given permutation of customers can represent several different solu-
tions, depending on where the routes start and end. The split algorithm

(E) is able to determine the optimal way to form routes from a given



Computers and Operations Research 148 (2022) 105986L.M. Hvattum
Fig. 1. An overview of the hybrid genetic search for solving the CVRP.
Fig. 2. Two solutions to a CVRP instance with eight customers, each with a possible encoded representation.
permutation in linear time (Vidal, 2016), and is thus used to decode
the permutation into an actual solution.

After the method has obtained a new solution, it applies local search
operators (F) to improve the solution. Several different neighborhoods
are used. As the search allows the exploration of infeasible solutions,
there is also a probability of applying a repair operation aiming to
recover a feasible solution. The population management (G) handles
the feasible and infeasible solutions separately. Once a subpopulation
reaches a certain size, it is trimmed down by removing any repeated
solutions, or by removing solutions with a worse evaluation. The
evaluation is based on both the solution quality and on a diversity
measure.

4. The order crossover

The OX crossover operator constitutes only one of seven compo-
nents in the hybrid genetic search, as depicted in Fig. 1. However, it
is potentially an important operator, as it dictates how solutions are
combined in order to generate new solutions. In the hybrid genetic
search, the OX crossover is used to create one new solution from a
given pair of existing solutions. Fig. 3 illustrates the procedure when
applied on the encoded solutions from Fig. 2.

The crossover starts by randomly selecting two cutting points that
split the encoded solution into two segments, as indicated by two
different background colors in Fig. 3. It is possible that the cutting
points are selected so that the segment between them will loop around
the permutation vector, but this is not the case in the example illus-
trated. The crossover then continues by copying the segment between
the cutting points from the first of the two combined solutions into
a new permutation vector. In the example, this corresponds to the
segment consisting of customers 3 and 4. This leaves six open spaces
in the permutation vector that is going to be used for the new solution
generated.

To complete the new solution, the second solution combined is
processed. Starting from the element corresponding to the position
directly after the copied segment (from the first solution), the second
solution is read and the missing elements from in the new solution
3

are added one by one in the order provided by the second solution.
Hence, customers 5 and 6 are copied to the new solution first, then
the processing of elements from the second solution wraps around and
continues with 8 and 7. Then, we loop around also in the new solution.
At this point, the next customer read in the second solution is 3, but
since this was already present in the copied segment, it is skipped. Thus,
next follows customer 2, and then finally customer 1.

It has been claimed that the OX crossover leads to new solutions
where the relative order of elements are similar to the orders in the
combined solutions (Gendreau et al., 2002). This is in contrast to other
crossovers that tend to preserve the position of elements or the edges
of the implied routes. In the illustrating example, the solutions that are
combined are essentially identical, as shown in Fig. 2. When we inspect
the giant tour implied by the new permutation vector obtained in our
example, as shown to the left in Fig. 4, it becomes apparent that several
long edges are introduced in the process.

On one hand, this suggests that the OX crossover may be integral
in diversifying the search process: it can introduce new edges, even
though these edges do not immediately appear to be advantageous.
On the other hand, scrambling solutions in this manner may waste
resources as the resulting solution must be improved using expensive
local search operators afterwards.

The example illustrates one type of behavior that we hereby ques-
tion: when filling in elements from the second solution, the process
starts immediately after the cutting point used to identify the segment
copied from the first solution. However, given that the order of routes
in a permutation is arbitrary, it does not follow that this location in
the permutation vector of solution two is related to the same location
in the permutation vector of solution one. In the example, even though
the beginning of the copied segment contains part of the same route
(in fact the same customer), the end of the segment contains customers
from different routes.

Does it really make sense to continue filling in the new solution from
the location of the cutting point? We will argue here that it makes more
sense to continue filling in the new solution from the location of the last
customer that was copied, not from the location that was last copied. In

other words, we should continue filling in starting from customer 4 in



Computers and Operations Research 148 (2022) 105986L.M. Hvattum
Fig. 3. Example of the OX crossover applied to two permutation vectors (on the left), providing a new permutation vector (on the right).
Fig. 4. Giant tours resulting from applying the original OX crossover (to the left) and an adjusted OX crossover (to the right) when combining the solutions shown in Fig. 2.
Fig. 5. Example of the adjusted OX crossover applied to two permutation vectors (on the left), providing a new permutation vector (on the right).
the second solution, not from the location in the second solution where
customer 4 was located in the first solution. A problematic behavior can
occur according to the original OX crossover because the customer that
is located just after the original cutting point in the second permutation
vector is likely unrelated to the customer that is located just before the
original cutting point in the first permutation vector.

This immediately brings us to an adjusted OX crossover, which is
illustrated for the same example in Fig. 5. Filling in the remainder of
the new solution from the described location in the second solution
provides a very different new solution. Its giant tour, shown to the
right in Fig. 4 has not introduced many long edges. It is, however, quite
similar to the solutions combined. This is not unreasonable, however,
given that the combined solutions were originally identical except for
the direction of travel. In addition, the new solution is not entirely
identical, and allows the exploration of a different route for visiting
customers 1, 2, and 3.

There are other situations where both the original OX crossover and
the proposed adjustment are counter-productive. When two relatively
similar solutions are combined, and when the segment to copy is
relatively small, the segment that is copied from the first solution
may be identical to a segment in the second solution (albeit at a
different location in the permutation vector). When the copied segment
4

Fig. 6. Primal gaps as a function of time when considering all 100 instances.



Computers and Operations Research 148 (2022) 105986L.M. Hvattum
Fig. 7. Primal gaps as a function of time when considering the 50 smallest instances.

Fig. 8. Primal gaps as a function of time when considering the 50 largest instances.

Table 1
Pairwise comparisons of runs and P-values from a two-sided sign-test (Derrac et al.,
2011).

Wins Losses P-value

AOX vs. OX 554 446 0.0007
AOX vs. ROX 559 441 0.0002

OX vs. ROX 535 465 0.0291

is relatively large, the non-copied segment in the first solution may be
identical to a corresponding segment in the second solution. In these
cases, the adjusted OX crossover would not create new permutations,
but rather end up recreating one of the permutations of the combined
solutions.

To deal with these situations, an additional adjustment is made. In
the adjusted OX crossover we check if the segment copied from the
first solution is found in an identical form in the second solution. If
that is the case, for example when the combined solutions are identical,
we instead choose a crossover point in the second solution at random,
while avoiding crossover points that are inside the identical segment.

We refer to the new variant as the adjusted order crossover (AOX).
As a third variant, to be considered as a benchmark, we define a
5

Fig. 9. Number of best-known solutions identified as a function of time, out of 1000
total runs.

random order crossover by always taking the cutting point in the
second solution as a completely random point. We label this as a
random order crossover (ROX).

Based on the discussion above, we would expect the ROX crossover
to perform worse, as it does not exploit any structural information from
the combined solutions when deciding on the relevant cutting point for
the second solution. Furthermore, as the AOX crossover avoids what is
presumably an unwanted behavior in the OX crossover, we believe that
the AOX crossover could be able to improve the performance of the
heuristic due to improving the intensification of the search. Although
the illustrating example could suggest that the AOX leads to less
diversification in the search, the occasional inclusion of a randomized
cutting points will help the search to diversify whenever the combined
solutions become relatively similar.

In the Appendix to this paper, Table 2 shows the code, written in
C++, of the original implementation of the OX crossover. The entire
open-source code of Vidal (2022) encompasses 2073 non-empty lines
of code (including comments) across 15 files. The OX crossover only
takes 29 lines of code (also including comments), which is about 1.4%
of the entire code base. The new implementation of the AOX crossover
takes 43 lines of code, many of which are identical to the original
implementation. The new code is provided in Table 3 of the Appendix.

5. Computational study

To evaluate whether the AOX crossover leads to a better perfor-
mance of the hybrid genetic search than the OX crossover, we design a
computational experiment. In the experiment we test the performance
across 100 benchmark test instances created by Uchoa et al. (2017).
The instances, known as the X-set, have between 100 to 1000 cus-
tomers, and are commonly used to evaluate the performance of both
heuristic and exact algorithms for the CVRP. Best-known solutions to
the instances were retrieved from CVRPLIB, using the link http://vrp.
atd-lab.inf.puc-rio.br/index.php/en/ accessed on April 26, 2022.

The code is compiled using Microsoft Visual C++ 2019 for a 64-
bit architecture, and the experiments are conducted on a standard
desktop computer with an Intel i9-9900 CPU at 3.1 GHz and with
32 GB of RAM. For each instance, a time limit is set to 2.4 s times
the number of customers. Since there are several random elements in
the heuristic, each instance is solved 10 times using different random
seeds. Three versions of the code are executed, corresponding to using
the OX crossover, the AOX crossover, or the ROX crossover.

http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/


Computers and Operations Research 148 (2022) 105986L.M. Hvattum

f
i
s
t
c
t
a

5

s
t
b
o
[

b
e
a
A
i
c
i

i
b
s
f
w

i
d
p
p
0

Table 2
Original C++ code for the order crossover (OX).
1 void Genetic::crossoverOX(Individual * result, const Individual * parent1,

const Individual * parent2)
2 {
3 // Frequency table to track customers already inserted
4 std::vector <bool> freqClient = std::vector <bool> (params->nbClients + 1, false);
5 // Picking the beginning and end of the crossover zone
6 int start = std::rand() % params->nbClients;
7 int end = std::rand() % params->nbClients;
8 while (end == start) end = std::rand() % params->nbClients;
9 // Copy in place the elements from start to end
10 int j = start;
11 while (j % params->nbClients != (end + 1) % params->nbClients)
12 {
13 result->chromT[j % params->nbClients] = parent1->chromT[j % params->nbClients];
14 freqClient[result->chromT[j % params->nbClients]] = true;
15 j++;
16 }
17 // Fill the remaining elements in the order given by the second parent
18 for (int i = 1; i <= params->nbClients; i++)
19 {
20 int temp = parent2->chromT[(end + i) % params->nbClients];
21 if (freqClient[temp] == false)
22 {
23 result->chromT[j % params->nbClients] = temp;
24 j++;
25 }
26 }
27 // Completing the individual with the Split algorithm
28 split->generalSplit(result, parent1->myCostSol.nbRoutes);
29 }
t
p

We next compare the performances of the alternative crossovers
rom three different perspectives. We first consider the method’s abil-
ty to find solutions such that the average gaps to the best-known
olutions are smaller. Then, we consider the ability to actually find
he best-known solutions for each instance. Finally, we consider direct
omparisons between the crossovers, and whether each crossover leads
o a method that is more or less likely to find a better solution than
nother crossover operator.

.1. Primal gaps

To evaluate the results, we first consider the gaps to best-known
olutions as calculated at the end of the runs. For the CVRP and
he given instances, this corresponds to the primal gaps as defined
y Berthold (2013). In Fig. 6 we plot these primal gaps as a function
f the running time, after normalizing the running times to the interval
0, 1].

The figure gives a visual indication of how the new AOX performs
etter than both OX and ROX for most of the running time. At the
nd of the runs, the primal gaps are 0.110% for OX, 0.105% for AOX,
nd 0.115% for ROX. This means that the primal gap when using
OX is 4.2% lower than the primal gap when using OX. The relative

mprovement for AOX is slightly larger when lower running times are
onsidered. For example, after a normalized running time of 0.2, the
mprovement is 7%, lowering the average gaps from 0.218% to 0.203%.

In Fig. 7 we show the primal gaps for the runs of the 50 smallest
nstances in the test set. Again, AOX is the best performing crossover,
ut on these smaller instances the randomized crossover gives a slightly
maller average gap than the original crossover. The final primal gaps
or OX, AOX, and ROX are, respectively, 0.026%, 0.021%, and 0.025%
hen considering the smallest instances.

Then, in Fig. 8 the primal gaps are shown for the 50 largest
nstances. This time the OX crossover performs better than the ran-
omized crossover, but nevertheless, the new adjusted AOX crossover
rovides the best average gaps also for the largest instances. The final
rimal gaps for OX, AOX, and ROX are here 0.194%, 0.190%, and
.205%.
6

t

5.2. Best-known solutions

Next, we consider the ability of the hybrid genetic search to find
the best-known solutions using three variants of the crossover opera-
tor. This measures a different aspect of the performance than simply
measuring the average primal gaps: it is possible to have very small
gaps without ever actually finding the best possible solution, and it is
possible to have a large gap on average, despite finding many optimal
solutions. Fig. 9 shows the number of best-known solutions found, out
of 1000 runs for each search variant considered.

The ROX crossover, where the entry point for the second solution
combined is totally randomized, appears to be better than the original
OX crossover in terms of finding the best-known solutions. The ran-
domness of the ROX likely leads to more varied performances, and it is
thus more likely to find optimal solutions, at the expense of having a
worse average performance. However, the AOX is the method that finds
the most best-known solutions, with 371 runs successfully identifying
the best solution, compared to 362 successful runs for ROX and 347
successful runs for OX. For all methods, the number of best-known
solutions found is steadily increasing, even as we get closer to the full
running time allotted, which is an indication that even better results
should be expected if the running time is increased.

5.3. Pair-wise comparisons

Finally, we evaluate the performance of the methods using a non-
parametric sign test (Derrac et al., 2011). Here, for a given pair of
methods, we count the number of runs where a given method performs
better than another method. A method is then considered to perform
better than another if either it obtains a better solution at the end of
the run, or if it obtains the same quality solution but finds it after
spending less computational time. The output of the sign tests are P-
values that indicate how likely we are to observe the actual result, or a
more skewed result, if the two methods compared are in reality equally
likely to produce the best outcome. A low 𝑃 -value then indicates that
he better performing method is statistically better than the worse
erforming method. This type of comparison is facilitated by using

he same random seeds for each method, so that runs are directly



Computers and Operations Research 148 (2022) 105986L.M. Hvattum
Table 3
New C++ code for the adjusted order crossover (AOX).
1 void Genetic::crossoverOX(Individual * result, const Individual * p1,

const Individual * p2)
2 {
3 // Frequency table to track customers already inserted
4 std::vector <bool> freqClient = std::vector <bool> (params->nbClients + 1, false);
5 // Picking the beginning and end of the crossover zone
6 int start1 = std::rand() % params->nbClients;
7 int end1 = std::rand() % params->nbClients;
8 while (end1 == start1) end = std::rand() % params->nbClients;
9 // Shift zone in p2 to match final customer of zone in p1
10 int start2 = start1, end2 = end1;
11 while (p2->chromT[end2 % params->nbClients] !=

p1->chromT[(end1) % params->nbClients]) start2++; end2++;
12 // Test if zone in p1 is different to zone in p2
13 bool same = true;
14 int size = (start1 < end1 ? end1 - start1 : params->nbClients - start1 + end1);
15 for (int j = 0; j < size && same; j++)
16 {
17 if (p1->chromT[(start1 + j) % params->nbClients] !=

p2->chromT[(start2 + j) % params->nbClients])
18 same = false;
19 }
20 // If same, randomize point in p2
21 if (same)
22 end2 = end2 + rand() % (params->nbClients - size);
23 // Copy in place the elements from start to end
24 int j = start1;
25 while (j % params->nbClients != (end1 + 1) % params->nbClients)
26 {
27 result->chromT[j % params->nbClients] = p1->chromT[j % params->nbClients];
28 freqClient[result->chromT[j % params->nbClients]] = true;
29 j++;
30 }
31 // Fill the remaining elements in the order given by p2
32 for (int i = 1; i <= params->nbClients; i++)
33 {
34 int temp = p2->chromT[(end2 + i) % params->nbClients];
35 if (freqClient[temp] == false)
36 {
37 result->chromT[j % params->nbClients] = temp;
38 j++;
39 }
40 }
41 // Completing the individual with the Split algorithm
42 split->generalSplit(result, p1->myCostSol.nbRoutes);
43 }
Table 4
Changes to original C++ code for the randomized crossover (ROX).
16 (. . . )
N // randomize end, giving the start point for second parent
N end = std::rand() % params->nbClients;
17 (. . . )
comparable: we start from the same initial set of solutions, and the runs
only diverge once a crossover operator is applied.

Table 1 summarizes the pair-wise comparisons, where each pair
of methods is evaluated on the full set of instances. The P-values are
sufficiently small in all three tests to conclude that one of the methods
is more likely to produce a better result than the other. That is, if we
solve an instance using both AOX and OX, it is more likely that the
AOX-run performs better than the OX-run. Similarly, both AOX and OX
are more likely to produce a better run than ROX.

We also performed similar tests when considering only the largest
instances and only the smallest instances. Focusing on a subset of
instances like this does change the results somewhat. For the smallest
instances, AOX is significantly better than both OX and ROX, but OX
is no longer significantly better than ROX from a statistical point of
view. The latter seems consistent with the primal gaps shown in Fig. 7.
When it comes to the largest instances, AOX is significantly better than
ROX, whereas the difference between AOX and OX and the difference
between OX and ROX are not significant.
7

6. Concluding remarks

The hybrid genetic search proposed by Vidal (2022) is one of the
best available heuristics for solving the capacitated vehicle routing
problem. The method uses many different operators to manipulate solu-
tions during a local search phase, but relies solely on an order crossover
(OX) operator when combining pairs of solutions. After arguing that
the OX crossover has certain drawbacks when used in the setting of
a vehicle routing problem, we proposed an adjusted order crossover
(AOX) operator and, as a benchmark, a random order crossover (ROX)
operator.

In a computational study, using standard benchmark test instances,
it is shown that the AOX is superior in three different aspects: (1) using
the AOX operator provides a smaller average gap to the best-known
solutions, reducing the gap obtained by using the OX operator by an
additional 4.2%; (2) using the AOX operator is more likely to result in
finding the best-known solution for the test instances examined; and
(3) for a given run, the AOX operator is more likely to either find a



Computers and Operations Research 148 (2022) 105986L.M. Hvattum
better solution or to find the same solution in less computational time,
when comparing to the OX operator.

Appendix. Code for crossover operators

To facilitate reproduction, this appendix provides both the original
code for the order crossover in the implementation by Vidal (2022) and
the new code suggested for the adjusted order crossover. The original
code in Table 2 has 29 lines, whereas the new code in Table 3 has 43
lines. The lines indicated with black line numbers are new, whereas the
lines with red line numbers have been modified, due to renaming some
variables. The randomized crossover used as a benchmark is identical to
the original code except that two new lines are added; these are shown
in Table 4.

References

Accorsi, L., Vigo, D., 2021. A fast and scalable heuristic for the solution of large-scale
capacitated vehicle routing problems. Transp. Sci. 55, 832–856.

Arnold, F., Gendreau, M., Sörensen, K., 2019. Efficiently solving very large-scale routing
problems. Comput. Oper. Res. 107, 32–42.

Arnold, F., Sörensen, K., 2019. Knowledge-guided local search for the vehicle routing
problem. Comput. Oper. Res. 105, 32–46.

Berthold, T., 2013. Measuring the impact of primal heuristics. Oper. Res. Lett. 41,
611–614.

Christiaens, J., Vanden Berghe, G., 2020. Slack induction by string removals for vehicle
routing problems. Transp. Sci. 54, 417–433.

Dantzig, G.B., Ramser, J.H., 1959. The truck dispatching problem. Manage. Sci. 6,
80–91.

David, L., 1985. Applying adaptive algorithms to epistatic domains. In: IJCAI’85:
Proceedings of the 9th International Joint Conference on Artificial Intelligence,
Vol. 1. pp. 162–164.

Derrac, J., García, S., Molina, D., Herrera, F., 2011. A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1, 3–18.
8

Gendreau, M., Laporte, G., Potvin, J.-Y., 2002. Metaheuristics for the capacitated VRP.
In: Toth, P., Vigo, D. (Eds.), The Vehicle Routing Problem. In: Discrete Mathematics
and Applications, SIAM, Philadelphia, USA, pp. 129–154.

Laporte, G., 2009. Fifty years of vehicle routing. Transp. Sci. 43 (4), 408–416.
Lenstra, J.K., Kan, A.R., 1981. Complexity of vehicle routing and scheduling problems.

Networks 11, 221–227.
Oliver, I.M., Smith, D.J., Holland, J.R.C., 1987. A study of permutation crossover

operators on the traveling salesman problem. In: Grefenstette, J. (Ed.), Ge-
netic Algorithms and their Applications: Proceedings of the Second International
Conference. Lawrence Erlbaum, Hillsdale, NJ, USA, pp. 224–230.

Pecin, D., Pessoa, A., Poggi, M., Uchoa, E., 2017. Improved branch-cut-and-price for
capacitated vehicle routing. Math. Program. Comput. 9, 61–100.

Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F., 2020. A generic exact solver for
vehicle routing and related problems. Math. Program. 183, 483–523.

Prins, C., 2004. A simple and effective evolutionary algorithm for the vehicle routing
problem. Comput. Oper. Res. 31 (12), 1985–2002.

Reeves, C.R., 2010. Genetic algorithms. In: Gendreau, M., Potvin, J.-Y. (Eds.), Handbook
of Metaheuristics, second ed. In: International Series in Operations Research &
Management Science, vol. 146, Springer, New York, NY, USA, pp. 109–140.

Simensen, M., Hasle, G., Stålhane, M., 2022. Combining hybrid genetic search with
ruin-and-recreate for solving the capacitated vehicle routing problem. J. Heuristics.

Subramanian, A., Uchoa, E., Ochi, L.S., 2013. A hybrid algorithm for a class of vehicle
routing problems. Comput. Oper. Res. 40, 2519–2531.

Uchoa, E., Pecin, D., Poessoa, A., Poggi, M., Vidal, T., Subramanian, A., 2017. New
benchmark instances for the capacitated vehicle routing problem. European J. Oper.
Res. 257, 845–858.

Vidal, T., 2016. Tehcnical note: Split algorithm in O(n) for the capacitated vehicle
routing problem. Comput. Oper. Res. 69, 40–47.

Vidal, T., 2022. Hybrid genetic search for the CVRP: Open-source implementation and
SWAP* neighborhood. Comput. Oper. Res. 140, 105643.

Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W., 2012. A hybrid genetic
algorithm for multidepot and periodic vehicle routing problems. Oper. Res. 60 (3),
611–624.

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C., 2013. A hybrid genetic algorithm with
adaptive diversity management for a large class of vehicle routing problems with
time-windows. Comput. Oper. Res. 40, 475–489.

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C., 2014. A unified solution framework
for multi-attribute vehicle routing problems. European J. Oper. Res. 234, 658–673.

http://refhub.elsevier.com/S0305-0548(22)00224-6/sb1
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb1
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb1
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb2
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb2
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb2
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb3
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb3
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb3
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb4
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb4
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb4
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb5
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb5
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb5
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb6
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb6
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb6
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb7
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb7
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb7
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb7
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb7
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb8
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb8
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb8
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb8
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb8
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb9
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb9
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb9
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb9
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb9
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb10
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb11
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb11
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb11
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb12
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb12
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb12
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb12
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb12
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb12
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb12
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb13
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb13
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb13
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb14
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb14
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb14
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb15
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb15
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb15
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb16
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb16
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb16
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb16
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb16
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb17
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb17
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb17
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb18
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb18
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb18
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb19
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb19
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb19
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb19
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb19
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb20
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb20
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb20
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb21
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb21
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb21
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb22
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb22
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb22
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb22
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb22
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb23
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb23
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb23
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb23
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb23
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb24
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb24
http://refhub.elsevier.com/S0305-0548(22)00224-6/sb24

	Adjusting the order crossover operator for capacitated vehicle routing problems
	Introduction
	Heuristics for the capacitated vehicle routing problem
	Hybrid genetic search
	The order crossover
	Computational study
	Primal gaps
	Best-known solutions
	Pair-wise comparisons

	Concluding remarks
	Appendix. Code for crossover operators
	References


