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Abstract. Aquaculture is an important industry in certain coastal areas. Focusing on the 
farming of salmon and trout, an operational planning problem arises with the goal of al-
locating a supply of fish t o t he d emand t hat i s e xpressed t hrough c ustomer o rders. This 
paper provides a conceptual model of such a planning problem and defines a  correspond-
ing bi-objective mathematical programming model. The problem is novel with respect to the 
structure of fish transport and the rules for satisfying customer orders with respect to fish size, 
quality, certification, and health status. Computational experiments have been conducted to 
gain further insight into the use of the provided model to provide support for planners who 
are involved in operational decision-making. The results indicated that the bi-objective op-
timization model can be useful in situations where a supply is insufficient to  cover all of  the 
demand within a given planning horizon.
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1. INTRODUCTION

The farming of salmon and trout in coastal areas has become an increasingly impor-
tant food source, providing significant contributions to the economies of the producing 
countries (NOU, 2019). The aquaculture industry is subject to regulations regarding 
the maximum-allowed biomass and must address the health of the grown fish (Norwe-
gian Food Safety Authority, 2020). In addition, exported fish may need certifications 
(Kiwa Norway, 2021).
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Figure 1 illustrates a typical supply chain for farmed fish. This paper addresses
a planning problem that arises in the later parts of the chain. After the fish are slaugh-
tered, they must be assigned to customer orders. These orders are either internal (as
a company has its own processing facilities) or external (meaning that receiving cus-
tomers are outside a company’s facilities). The allocation to orders should maximize
the amount of fish that is delivered while also fulfilling as many high-priority customer
orders as possible.

Fig. 1. Supply chain in aquaculture

Perishable products such as fish increase the complexity of supply chains because
of their limited shelf-lives (Koldborg Jensen et al., 2010), by the fact that their values
decrease while moving downstream (Musavi & Bozorgi-Amiri, 2017), and through the
high variability of their price and demand (Ahumada & Villalobos, 2009). Koldborg
Jensen et al. (2010) highlighted several characteristics in the supply chains of the fish
industry. In general, different species of fish belong to different chains from the time of
their catch to consumption, but some species may be interchangeable from the point
of view of the end customer; this leads to an interdependence among the different
chains. Aquaculture can occasionally be a parallel source to wild catch, but it can
also result in independent supply chains from farm to fork.

At the upstream end of the supply chain, fish are caught along with the fish
breeding in farms (Koldborg Jensen et al., 2010), while fresh and processed sales
are at the downstream end. Between these, there are several agents who handle and
process the fish and their products. Abedi and Zhu (2017) divided such supply chains
that involve fish or other livestock into two parts; the warm chain, and the cold chain.
The warm chain covers live fish, whereas the cold chain covers the products after
harvest and processing. The latter is the focus of this paper.

Some related research has been conducted on the use of optimization models to
support decisions in supply chains with perishable products. Ahumada and Villalo-
bos (2011) presented a mixed-integer programming model to decide which agricultural
products to harvest, how many times per week to harvest them, and on which days
to harvest them. They also considered restrictions on time and labor and how har-
vest decisions affected the quality of the products. Amorim et al. (2012) developed
a multi-objective mixed-integer programming model that covered the production and
distribution of perishable goods. The focus was to minimize the total cost and max-
imize the mean remaining shelf life. Musavi and Bozorgi-Amiri (2017) considered
a multi-objective optimization problem for a perishable food supply chain. They ap-
plied a heuristic solution method (NSGA-II) to generate an approximation of the
Pareto front.

Abedi and Zhu (2017) provided a mixed-integer programming model to maximize
the profit of a trout supply chain. The output of the model included the purchase
quantity (of trout spawns), a harvest plan, and a distribution plan. The distribution
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plan also involved customer prioritization based on quantity in demand in order to
efficiently find a way to deliver fish. The authors remarked that, up until that point in
time, fish-farming companies had not taken much advantage of efficient distribution
planning. Mosallanezhad et al. (2021) investigated a shrimp supply chain network,
focusing on the locations of facilities such as distribution centers, wholesalers, facto-
ries, and markets as well as determining the flow of the products and waste within
the network.

Outside of supply chains for perishable products, another stream of relevant
research focuses on order allocation. This includes research on combined supplier
selection and order allocation (Jia et al., 2020; Kaviani et al., 2020; Moheb-Alizadeh &
Handfield, 2019; Sharma & Darbari, 2021). However, the existing literature considers
allocating orders to suppliers from the point of view of the producer, whereas our
research considers customer orders. Another direction of this type of research is the
combination of location and allocation; for example, regarding nursing homes (Wang
& Ma, 2018) or crisis situations (Ghasemi et al., 2019) (where one first locates facilities
and then allocates flow).

Fan et al. (2019) tackled orders from customers at a brand manufacturer where
the orders were aggregated before the brand manufacturer sent them to the equipment
manufacturers. They had a multi product-period-equipment manufacturer problem
and presented an integer nonlinear programming formulation. To solve their problem,
a novel genetic algorithm was developed. Seitz et al. (2020) allocated supply to cus-
tomer orders (as in our work) while taking into account the fact that the demand
was forecast (which differed from our setting). In general, there is less research on
order allocation under uncertainty; however, there are some examples (such as the
allocation of uncertain customer orders to machines (Zhang et al., 2022)).

In our problem, we considered two objectives: maximizing deliveries, and the
number of high-priority orders that are fulfilled. The ε-constraint method, the aug-
mented ε-constraint method, or variants of these have been used to solve optimiza-
tion models for many different types of supply chains, including the dairy industry
(Gholizadeh et al., 2021), oil and gas (Ebrahimi & Bagheri, 2022), waste manage-
ment (Abdollahi Saadatlu et al., 2022; Rabbani et al., 2020), nursing homes (Wang
& Ma, 2018), and evacuation planning (Ghasemi et al., 2019). In a relevant article,
Fasihi et al. (2021b) proposed a novel mathematical model for minimizing the cost of
a closed-loop supply chain for fish.

The ε-constraint method tends to be time-consuming and not always able to
solve all instances within a reasonable time limit; therefore, it is often compared to
heuristic solution methods (Fasihi et al., 2021a). Ghasemi et al. (2019) found that the
ε-constraint method provided good results (despite being slow), and Ebrahimi and
Bagheri (2022) preferred the ε-constraint method over goal programming.

Our research is motivated by companies that farm, slaughter, and sell fish. The
companies have planners who allocate slaughtered fish to customer orders; the com-
bination of the relevant aspects of this planning problem has not been studied in the
academic literature. This includes how fish transport is conducted and the rules for
fulfilling orders with respect to fish quality, size, certification, and health status. This
paper contributes to the literature by providing a conceptual model of the problem
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at hand and then producing a mixed-integer programming model for the problem.
Finally, we report on computational experiments that were performed to assess the
usefulness of the mathematical model. Based on the results, we aim to characterize sit-
uations where bi-objective optimization is beneficial and, on the other hand, situations
where single-objective optimization is sufficient.

The remainder of this paper is structured as follows. Section 2 describes the prob-
lem that was modeled and solved. Next, Section 3 presents a mixed-integer program-
ming model for the problem. A computational study to evaluate the model and the
obtained solutions is contained in Section 4, followed by our conclusions in Section 5.

2. PROBLEM DESCRIPTION

When fish is slaughtered, planners need to assign the fish to any pending customer
orders; after this, the fish is transported to the customers. We focus on the deci-
sions that planners must make when assigning fish to orders, the information that
is available when making decisions, and the restrictions to which the decisions must
adhere. The plans are made before the start of each week; then, the planning horizon
is Monday through Friday (as illustrated in Figure 2).

Fig. 2. Initial planning period and planning horizon

We next describe the physical flow of fish through the supply chain, followed
by the flow of information with respect to the planning process and further details
regarding the process of allocating the fish to the customers’ orders.

2.1. Physical flow

The main entities that were considered in this research were fish farms, plants, and
distribution centers. The physical flow of fish from farms is illustrated in Figure 3,
which follows the flow from the start of an order to the end customer.

Fish farms are located along coasts and consist of facilities where fish are grown.
At the time of harvest, the fish are loaded onto a well boat and transported from
the farm to the plants. A plant consists of a slaughterhouse, a packing facility, and
possibly a processing facility that is located in the same building. When arriving at the
plant, the fish are unloaded and delivered to the slaughterhouse. When the slaughter
process is completed, the fish are either forwarded to an internal-processing facility
or transported out of the plant.
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If the next step is the internal-processing facility, the fish are sent directly from the
slaughterhouse to the facility and further processed into filets or other fish products.
Otherwise, the fish must first be packed into boxes at the packing facility. A standard
box weighs around 20 kg when fully packed. After being packed, the boxes are ready
for storage or further transport. The storage capacity in a plant is limited, and the
boxes are only stored there for a short period of time. When the boxes are shipped
from the plant, the next destination can be a final customer or a distribution center.

Fig. 3. Simplified illustration of physical flow

A distribution center is used as an intermediary hub and has the features of
consolidation and storage. All of the incoming supply to the distribution center comes
from the plants. There is a certain distance between a plant and a distribution center,
and the lead time is one or two days. If necessary, it is possible to consolidate the
supply from multiple plants prior to further transport. The distribution center has
a significantly larger inventory capacity than the plants do, and long-term storage is
allowed so that boxes can be stored up until the expiration dates of the fish.

2.2. Information flow

Fish are characterized by three attributes: species, quality, and size class. There are
two species involved: salmon, and trout. Each is split into three different qualities and
then subdivided into nine different size classes based on the weights of the fish.

A fish farm has a set of certifications and a given status for the health of the fish.
The fish that comes from a given farm is associated with the same certificates and
health status. When the fish have grown to an acceptable weight and size, they are
ready for harvest. The fish are harvested on a specific day and sent directly to a plant
for further processing. The planners know the day and time that the fish will arrive
at the plant but cannot influence this time themselves.

The planners also have access to continuously updated forecasts of the amounts
of fish that will be delivered to a plant. The species of the incoming fish is known, but
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the forecast has more-specific data on the total amount of fish, the amount of the fish
from each size class, and the amount of the fish with a given quality. When the fish is
slaughtered, it is also weighed and its quality checked. At this point, the planners
will begin to receive more-accurate information about the available amounts of the
supplies.

The demand for fish is expressed through orders. The main elements of an order
are details about the requested species along with the size class, quality, number
of boxes, certification, health status, delivery date, and delivery location. A sales
department works closely with planners and handles all orders, customer relationships,
contracts, and prices. In cooperation, the planners and sales department decide about
the priorities of the individual orders.

An order contains details about the numbers of boxes that are requested for
a given combination of species, size class, and quality. The orders can allow for flexi-
bility in the numbers of boxes that are delivered for a given combination, which are
given as upper and lower bounds on the numbers of boxes. If it is possible to deliver
within the bounds, the order is considered to be fulfilled. While an order specifies
a certain species and quality, it may allow for the delivery of multiple size classes.

Each order specifies the date on which the customer wants the fish to reach its
destination. When allocating fish to orders, the planners use the day of delivery to
decide when the supply should be sent from the plant. An order can allow for some
flexibility with respect to the requested delivery date.

The orders can specify that the fish must have one or more certifications. The
customers can also refrain from receiving fish with specific health statuses. The federal
governments of certain countries have their own requirements for the health and
certification of fish; this means that, if the fish is to be exported to such countries,
then it needs to meet their specific requirements.

An important distinction is between external and internal orders. An internal
order is an order that comes from the internal-processing facility at a plant. External
orders have destinations that are outside the plants, which require the transportation
of the fish from the plants to the final destinations (possibly via distribution centers).

2.3. Allocation process

The allocation process has the goal of allocating supply to demand in the best possible
way. The planners go through five defined steps when creating a plan:
1) receiving orders,
2) checking orders,
3) prioritizing orders,
4) checking whether it is possible to fulfill orders,
5) delivering or canceling orders.

Planners receive order details from the sales department and check what is re-
quested. The orders are then assigned their priorities based on contractual obligations,
customer relationships, and prices. Sometimes, a customer must deal with deviations
from their specified demand. The planners aim to deliver to customers with as lit-
tle deviation as possible over a longer period of time. Some customers place regular



Decision Support for Allocating Farmed Fish to Customer Orders. . . 73

orders, which opens up the possibility of leveling out the deviations over time. If
a customer has a significant deviation from their demand in one week, their order for
the following week can be set to a higher priority.

The available supply is known exactly or is estimated. Based on the above infor-
mation, the planners can start the allocation of supply to demand while deciding how
each order is to be fulfilled. If it is possible to fulfill an order, it can be accepted; oth-
erwise, it must be cancelled. When all of the orders that can be fulfilled are processed,
there might be unsold fish left. The sales department then tries to obtain additional
orders (for example, in the spot market) so that all of the fish can be sold. If this is
impossible, the fish is stored until the next planning horizon (usually at a distribution
center).

In those weeks when there is an insufficient supply, the planners are forced to
decide which orders to fulfill. In those weeks with surpluses of supply, however, chal-
lenges arise regarding where to store the boxes. The decision about finding appropriate
locations to store the boxes is affected by the storage costs, the available inventory
capacity, and the shelf life of the fish.

Two goals are studied in this paper. The first goal is to provide as much of the
available supply as possible to orders. This will lower the total number of unsold boxes
that are left at the end of a planning horizon. Lowering the numbers of remaining
unsold boxes can potentially lower storage costs. The second goal is to fulfill as many
highly prioritized orders as possible. As previously stated, the priority of an order is
based on contracts, customer relationships, and prices. Satisfying this goal will please
important customers and can increase profits. The interesting connection between the
two goals is that they can be conflicting or nonconflicting depending on the balance
among the supply, the demand, and the prioritization of the orders.

3. MATHEMATICAL MODEL

The following model intends to capture the fundamental essence of the fish-allocation
process. It is designed for use just before weekly operations start and is not meant for
dynamic replanning during a planning horizon.

The fish are reared in individual farms; L denotes the set of all farms. Outbreaks
of disease can occur on any farm; the set of possible diseases is written as E. The
farms can be certified; the set of possible certifications is indicated by H.

After harvesting the fish from a farm, it is sent to a plant for slaughter and
packing; A denotes the set of all plants. The fish are described using the following
attributes: species, size class, and quality. To this end, we introduce the set S of the
species, the set Z of the size classes, and the set Q of the possible qualities.

The model is designed for a seven-day schedule, but the notation is kept flexible.
All of the plants are open from day 1 through day T . The lead time from plant a to
a distribution center is Ra, which is at least one full day. Parameter F represents the
longest lead time from a plant to a distribution center, with F = maxa∈A {Ra}. All
of the supply that is sent from a plant on day T must arrive at a distribution center
before a planning horizon ends. Therefore, the length of the planning horizon is T +F ,
and the distribution center is open from day 1 through day T + F .
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There are two types of orders. External orders have destinations that are outside
a plant and are elements of set OEX . Internal orders are related to the processing
facilities that are located in the same buildings as the plants and are elements of
set OIN . Parameter Ko is used to indicate the importance of an order o, with higher
values indicating a higher priority when serving the orders.

External orders have two different methods of delivery, while internal orders
have only one. Direct delivery is defined as sending boxes directly from one plant to
a customer without the need to consolidate from other plants. Variable xAl,a,s,z,q,t,o
represents the number of boxes that contain fish from species s, size class z, and
quality q that are harvested on farm l and sent directly from plant a on day t to cover
order o. Binary variable yAa,t,o takes a value of 1 if order o is delivered directly from
plant a on day t; otherwise, this value is 0.

If the delivery of an order is made from a distribution center, there cannot also
be a direct delivery from a plant to the same order. Variable xDCl,a,s,z,q,t,o represents the
number of boxes that contain fish from species s, size class z, and quality q that are
harvested on farm l and sent from plant a through a distribution center to order o on
day t. Binary variable yDCt,o takes a value of 1 if order o is served from a distribution
center on day t; otherwise, this value is 0.

Internal orders have only one method of delivery, which is in-house delivery. It is
not allowed to serve an internal-processing facility in plant a from a distribution center
or other plants. Variable xINl,a,s,z,q,t,o represents the number of boxes that contain fish
from species s, size class z, and quality q that are harvested on farm l and delivered to
the internal-processing facility of plant a to deliver order o on day t. Binary variable
yINt,o takes a value of 1 if internal order o is served on day t; otherwise, the value is 0.

Parameters:
T – number of days that plant is open,
F – longest lead time from plant to distribution center,

Pl,a,s,z,q,t – supply coming from farm l to plant a of species s, size class z, and
quality q on day t,

DTOTALs,q,o – total demand of boxes of fish of species s and quality q in order o,
DMAXs,z,q,o – maximum demand of boxes of fish of species s, size class z, and quality

q in order o,
DMINs,z,q,o – minimum demand of boxes of fish of species s, size class z, and quality

q in order o,
Ko – importance of order o,
Go – relative lower bound on fish delivered to order o of given species and

quality,
σAt,o – 1 if order o does not allow delivery on day t, 0 otherwise,
σDCt,o – 1 if order o does not allow delivery on day t, 0 otherwise,
σINt,o – 1 if order o does not allow delivery on day t, 0 otherwise,

IAl,a,s,z,q – initial number of boxes of fish of species s, size class z, and quality q
from farm l in inventory at plant a,

IDCl,a,s,z,q – initial number of boxes of fish of species s, size class z, and quality q
coming from farm l through plant a in inventory at distribution center,
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CAa – inventory capacity at plant a,
Ra – lead time from plant a to distribution center,
δAa,o – 1 if plant a can deliver to order o, 0 otherwise,
UOo,e – 1 if order o does not accept fish from farm with disease e, 0 otherwise,
ULl,e – 1 if fish comes from farm l without disease e, 0 otherwise,
πOo,h – 1 if order o requires fish with certificate h, 0 otherwise,
πLl,h – 1 if fish from farm l have certificate h, 0 otherwise,
JA – weight of making direct delivery,

JDC – weight of making delivery through distribution center,
M – large constant used to ensure linear constraints.

Variables:
xAl,a,s,z,q,t,o – number of boxes of fish of species s, size class z, and quality q from

farm l sent directly from plant a to order o on day t,
xDCl,a,s,z,q,t,o – number of boxes of fish of species s, size class z, and quality q from

farm l sent from plant a through distribution center to order o on day
t,

xINl,a,s,z,q,t,o – number of boxes of fish of species s, size class z, and quality q from
farm l sent from plant a to internal order o on day t,

yAa,t,o – 1 if delivery to order o on day t directly from plant a is done, 0 otherwise,
yDCt,o – 1 if delivery to order o on day t directly from distribution center is done,

0 otherwise,
yINt,o – 1 if delivery to internal order o on day t from plant is done, 0 otherwise,

µAl,a,s,z,q,t – number of boxes of fish of species s, size class z, and quality q from
farm l stored at plant a on day t,

µDCl,a,s,z,q,t – number of boxes of fish of species s, size class z, and quality q from
farm l sent from plant a stored at distribution center on day t,

bl,a,s,z,q,t – number of boxes of fish of species s, size class z, and quality q from
farm l sent from plant a to distribution center on day t.

3.1. Objective functions

We define two objective functions (W1 and W2) as representing the total number of
boxes that have been delivered to all orders and the total value of the prioritized orders
that have been fulfilled, respectively. Both objective functions are to be maximized.

maxW1 =∑
l∈L
∑
l∈L
∑
a∈A
∑
s∈S
∑
z∈Z
∑
q∈Q
(
T

∑
t=1

εx

∑
o∈O

JAxAl,a,s,z,q,t,o+

+∑
T+F
t=1 JDCxDCl,a,s,z,q,t,o +∑

T
t=1∑o∈OIN x

IN
l,a,s,z,q,t,o).

(1)

The first goal is to deliver as much as possible of the available supply to the orders,
which corresponds to maximizing the total number of boxes that are delivered to all
orders. It is possible for planners to predefine which delivery method is preferred for
any external orders. Weights for direct delivery JA and delivery through distribution
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center JDC are multiplied with their respective variables. A relatively higher weight
on one of the two parameters indicates which of the delivery methods is preferred;
each weight is a positive number that is less than or equal to 1.

maxW2 = ∑
o∈Oεx

Ko (∑
a∈A

T

∑
t=1
yAa,t,o +

T+F
∑
t=1

yDCt,o ) + ∑
o∈OIN

Ko
T

∑
t=1
yINt,o . (2)

The second goal is to fulfill as many highly prioritized orders as possible; that is,
maximizing the total value of the prioritized orders that have been fulfilled.

3.2. Constraints

Initial inventory

µAl,a,s,z,q,t = I
A
l,a,s,z,q, l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t = 0 , (3)

µDCl,a,s,z,q,t = I
DC
l,a,s,z,q, l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t = 0 . (4)

The first set of constraints governs the initial inventories; Constraints (3) make sure
that the initial inventory is set in a plant, while Constraints (4) handle the initial
inventory in a similar fashion in a distribution center.
Inventory capacity constraints at plant

∑
l∈L
∑
s∈S
∑
z∈Z
∑
q∈Q

µAl,a,s,z,q,t ≤ C
A
a , a ∈ A, t ∈ {0, . . . , T} . (5)

The value of variables µAl,a,s,z,q,t must be less than or equal to the inventory capacity
at plant a, as is enforced by Constraints (5). The distribution center has no inventory-
capacity constraint due to the assumption that its capacity is infinite.
Balance constraints at plants

Pl,a,s,z,q,t + µ
A
l,a,s,z,q,t−1 − ∑

o∈Oεx
xAl,a,s,z,q,t,o−

−∑o∈OIN xINl,a,s,z,q,t,o − bl,a,s,z,q,t = µ
A
l,a,s,z,q,t,

l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t = 0 .

(6)

Constraints (6) balance the inventory and the incoming and outgoing flows for plant a.
The available supply in period t consists of incoming supply Pl,a,s,z,q,t and the inven-
tory from previous period µAl,a,s,z,q,t−1. If there is no available supply for a given
combination of farm, plan, species, size class, and quality, all of the variables with
this combination are set to 0. Variables xAl,a,s,z,q,t,o and xINl,a,s,z,q,t,o state the number
of boxes delivered directly or in-house, respectively. Variables bl,a,s,z,q,t represent the
number of boxes that are sent from plant a to a distribution center. Sending boxes
from a plant to a distribution center is done in order to ensure that there are enough
boxes that are available for further delivery or to store the boxes at the distribution
center instead of at the plant. All of the boxes that are left on day t at plant a are
stored for the next period.
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Balance constraints at distribution center

µDCl,a,s,z,q,t−1 − ∑
o∈Oεx

xDCl,a,s,z,q,t,o = µ
DC
l,a,s,z,q,t,

l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . ,Ra} ,
(7)

bl,a,s,z,q,t−Ra + µ
DC
l,a,s,z,q,t−1 − ∑

o∈Oεx
xDCl,a,s,z,q,t = µ

DC
l,a,s,z,q,t,

l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1 +Ra, . . . , T +Ra} ,
(8)

µDCl,a,s,z,q,t−1 − ∑
o∈Oεx

xDCl,a,s,z,q,t,o = µ
DC
l,a,s,z,q,t,

l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t ∈ {T +Ra + 1, . . . , T + F} .
(9)

Three sets of constraints are used to force the correct balance of inventory, incom-
ing flow, and outgoing flow, respectively, at a distribution center. All of the incoming
flow to the distribution center comes from the plants. All of the outgoing flow is the
number of boxes that are delivered from the distribution center to the orders.

The lead time from plant a to a distribution center is Ra, which means that
it takes Ra days to send the supply from plant a to the distribution center. The
distribution center is open from Day 1, but the incoming supply can only arrive Ra
days after leaving plant a. This affects the incoming flow at the distribution center.
Constraints (7) ensure that there is balance in inventory and out-going flow in the
periods before new supply can arrive from plant a.

The first day that the supply that is sent from plant a can arrive at a distribution
center is on day 1 + Ra. Constraints (8) ensure the balance of inventory, incoming
flow, and outgoing flow at the distribution center from period 1+Ra through T +Ra.
Variables bl,a,s,z,q,t−Ra represent the number of boxes that are sent on day t−Ra from
plant a and arrive on day t at the distribution center.

The distribution center is open in Period 1 through T + F , but the constraint
set (8) is only valid from 1 +Ra to T +Ra. If Ra is less than F for plant a, then this
causes a problem. Variables µDCl,a,s,z,q,t−1, x

DC
l,a,s,z,q,o, and µDCl,a,s,z,q,t that are related

to plant a are unbounded in the periods after T + Ra. Constraints (9) address this
problem and ensure that, from T +Ra + 1 through T +F , all of the variables that are
related to those plants with lead times that are shorter than F are bounded.

Variables bl,a,s,z,q,t−Ra are omitted from Constraints (9). An example is used to
explain why the variables are omitted. If the lead time of plant a is one day and it is
now day T + 2, then variables bl,a,s,z,q,t−Ra are related to the number of boxes that
left plant a on day T + 1. The plant is only open from day 1 through day T , so no
boxes leave from plant a after day T . It is therefore redundant to have variables that
are related to the number of boxes that are sent on day T + 1. This is the reason for
not including bl,a,s,z,q,t−Ra in the constraint set.
Delivery

∑
a∈A

T

∑
t=1
yAa,t,o +

T+F
∑
t=1

yDCt,o ≤ 1, o ∈ Oεx, (10)

T

∑
t=1
yINt,o ≤ 1, o ∈ Oεx. (11)
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Constraints (10) make sure that, if an external order is accepted, only one of the
two available delivery methods for external orders is used. If the direct delivery from
a plant is used, then only one plant can deliver to the order. It is only allowed to
deliver one time to an order throughout the entire planning horizon regardless of
the chosen delivery method. If an internal order is accepted, it is only served once
throughout the planning horizon, as is indicated by Constraints (11).
Day of delivery

∑
l∈L
∑
a∈A
∑
s∈S
∑
z∈Z
∑
q∈Q

xAl,a,s,z,q,t,o ≤M(1 − σ
A
t,o), t ∈ {1, . . . , T} , o ∈ Oεx, (12)

∑
l∈L
∑
a∈A
∑
s∈S
∑
z∈Z
∑
q∈Q

xDCl,a,s,z,q,t,o ≤M(1 − σ
DC
t,o ), t ∈ {1, . . . , T + F} , o ∈ Oεx, (13)

∑
l∈L
∑
a∈A
∑
s∈S
∑
z∈Z
∑
q∈Q

xINl,a,s,z,q,t,o ≤M(1 − σ
IN
t,o ), t ∈ {1, . . . , T} , o ∈ OIN . (14)

The day of delivery is the day that the supply must be sent so it can arrive on the day
that is specified in the order. Constraints (12) ensure that it is only possible to deliver
directly from a plant to an external order on the allowed day of delivery. Similarly,
Constraints (13) state that it is only possible to deliver from the distribution center
to an external order on the allowed day of delivery. Finally, Constraints (14) ensure
that it is only possible to deliver to an internal order on the allowed day of delivery.
Demand – upper bound

∑
l∈L
∑
z∈Z

xAl,a,s,z,q,t,o ≤D
TOTAL
s,q,o yAa,t,o,

a ∈ A, s ∈ S, q ∈ Q, t ∈ {1, . . . , T} , o ∈ Oεx,
(15)

∑
l∈L
∑
a∈A
∑
z∈Z

xDCl,a,s,z,q,t,o ≤D
TOTAL
s,q,o yDCt,o ,

s ∈ S, q ∈ Q, t ∈ {1, . . . , T + F} , o ∈ Oεx,
(16)

∑
l∈L
∑
a∈A
∑
z∈Z

xINl,a,s,z,q,t,o ≤D
TOTAL
s,q,o yINt,o ,

s ∈ S, q ∈ Q, t ∈ {1, . . . , T} , o ∈ OIN .
(17)

The model allows an order to have flexibility in the number of boxes that are deliv-
ered and the possibility of substituting the size classes that are used in the delivery.
Flexibility is allowed in the number of boxes that are specified in an order. Parameter
DTOTALs,q,o represents the demand for a specific combination of species s and quality q
for order o. Three sets of constraints are related to separate methods of delivery and
the upper bound on this demand, effectively stating that the deliveries to an order
cannot exceed the maximum amounts of fish of a given species and quality levels that
are requested.

The number of boxes that are delivered directly from plant a are fewer than or
equal to the maximum number of boxes that are specified in order o for a given combi-
nation of species s and quality q; this controlled by Constraints (15). Constraints (16)
ensure that the number of boxes that are delivered from the distribution center are
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fewer than or equal to the maximum number of boxes that are specified in order o for
a given combination of species s and quality q, while Constraints (17) ensure that the
number of boxes that are delivered in-house are fewer than or equal to the maximum
number of boxes that are specified in order o for a given combination of species s and
quality q.

Demand – lower bound

∑
l∈L
∑
z∈Z

xAl,a,s,z,q,t,o ≥D
TOTAL
s,q,o Goy

A
a,t,o,

a ∈ A, s ∈ S, q ∈ Q, t ∈ {1, . . . , T} , o ∈ Oεx,
(18)

∑
l∈L
∑
a∈A
∑
z∈Z

xDCl,a,s,z,q,t,o ≥D
TOTAL
s,q,o Goy

DC
t,o ,

s ∈ S, q ∈ Q, t ∈ {1, . . . , T + F} , o ∈ Oεx,
(19)

∑
l∈L
∑
a∈A
∑
z∈Z

xINl,a,s,z,q,t,o ≥D
TOTAL
s,q,o Goy

IN
t,o ,

s ∈ S, q ∈ Q, t ∈ {1, . . . , T} , o ∈ OIN .
(20)

Parameter Go is a value that is within a range of 0 to 1. If parameter DTOTALs,q,o

is multiplied by Go, the lower bound on the demand for a specific combination of
species s and quality q is found for order o. Constraints (18) force the number of boxes
that are delivered directly from plant a to be more than or equal to the minimum
number of boxes that are specified in order o for a given combination of species s and
quality q. Constraints (19) ensure that the number of boxes that are delivered from the
distribution center are more than or equal to the minimum number of boxes that are
specified in order o for a given combination of species s and quality q. The number
of boxes that are delivered in-house must be more than or equal to the minimum
number of boxes that are specified in order o for a given combination of species s and
quality q; this is expressed by Constraints (20).

Demand – upper bound (size class)

∑
l∈L
xAl,a,s,z,q,t,o ≤D

MAX
s,z,q,o y

A
a,t,o,

a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , T} , o ∈ Oεx,
(21)

∑
l∈L
∑
a∈A

xDCl,a,s,z,q,t,o ≤D
MAX
s,z,q,o y

DC
t,o ,

s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , T + F} , o ∈ Oεx,
(22)

∑
l∈L
∑
a∈A

xINl,a,s,z,q,t,o ≤D
MAX
s,z,q,o y

IN
t,o ,

s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , T} , o ∈ OIN .
(23)

Parameter DMAXs,z,q,o represents the upper bound on a given size class z that can be
delivered with a combination of species s and quality q for order o. The parameter
must be set to less than or equal to DTOTALs,q,o . If DMAXs,z,q,o is set to zero, it is not
allowed to deliver anything of this size class z for this combination of species s and
quality q for order o. If an order is accepted, Constraints (18)–(20) control the total



80 S.H. Knudseth, E. Molland, A. Hoff, L.M. Hvattum, J. Oppen

amount that is delivered for the given species and quality of the fish. Combined with
Constraints (21)–(26), a company has some flexibility in terms of which size classes
are used to meet the demand.

Constraints (21) state that the number of boxes of size class z that are deliv-
ered directly from plant a must be fewer than or equal to the maximum number of
boxes that are specified in order o for a given combination of species s, size class z, and
quality q. Next, Constraints (22) ensure that the number of boxes of size class z
that are delivered from the distribution center are fewer than or equal to the maxi-
mum number of boxes that are specified in order o for a given combination of species s,
size class z, and quality q. Then, Constraints (23) ensure that the number of boxes
of size class z that are delivered internally are fewer than or equal to the maximum
number of boxes that are specified in order o for a given combination of species s, size
class z, and quality q.
Demand – lower bound (size class)

∑
l∈L
xAl,a,s,z,q,t,o ≥D

MIN
s,z,q,o y

A
a,t,o,

a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , T} , o ∈ Oεx,
(24)

∑
l∈L
∑
a∈A

xDCl,a,s,z,q,t,o ≥D
MIN
s,z,q,o y

DC
t,o ,

s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , T + F} , o ∈ Oεx,
(25)

∑
l∈L
∑
a∈A

xINl,a,s,z,q,t,o ≥D
MIN
s,z,q,o y

IN
t,o ,

s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , T} , o ∈ OIN .
(26)

Parameter DMINs,z,q,o represents the lower bound of the boxes of a given size class s that
must be delivered with a combination of species s and quality q for order o. The value
of parameter DMINs,z,q,o must be less than or equal to DMAXs,z,q,o. Then, Constraints (24)
enforce that the number of boxes of size class z that are delivered directly from
plant a are more than or equal to the minimum number of boxes that are specified in
order o for a given combination of species s, size class z, and quality q.

Constraints (25) ensure that the number of boxes of size class z that are delivered
from a distribution center are more than or equal to the minimum number of boxes
that are specified in order o for a given combination of species s, size class z, and
quality q. For internal orders, Constraints (26) state that the number of boxes of
size class z that are delivered in-house must be more than or equal to the minimum
number of boxes that are specified in order o for a given combination of species s, size
class z, and quality q.
Disease

∑
a∈A
∑
s∈S
∑
z∈Z
∑
q∈Q
(
T

∑
t=1
xAl,a,s,z,q,t,o +

T+F
∑
t=1

xDCl,a,s,z,q,t,o) ≤M ((1 −U
O
o,e) +U

L
l,e) ,

L ∈ L, o ∈ Oεx, e ∈ E,

(27)

∑
a∈A
∑
s∈S
∑
z∈Z
∑
q∈Q
(
T

∑
t=1
xINl,a,s,z,q,t,o) ≤M ((1 −U

O
o,e) +U

L
l,e) ,

L ∈ L, o ∈ OIN , e ∈ E.

(28)
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If external order o is to receive fish that was grown in farm l, then Constraints (27)
ensure that the health status of disease e is what is specified in the order. Similarly,
if internal order o is to receive fish that was bred in farm l, Constraints (28) ensure
that the health status of disease e is what is specified in the order.

Certifications

∑
a∈A
∑
s∈S
∑
z∈Z
∑
q∈Q
(
T

∑
t=1
xAl,a,s,z,q,t,o +

T+F
∑
t=1

xDCl,a,s,z,q,t,o) ≤M ((1 − π
O
o,h) + π

L
l,h) ,

L ∈ L, o ∈ Oεx, h ∈H,

(29)

∑
a∈A
∑
s∈S
∑
z∈Z
∑
q∈Q
(
T

∑
t=1
xINl,a,s,z,q,t,o) ≤M ((1 − π

O
o,h) + π

L
l,h) ,

L ∈ L, o ∈ OIN , h ∈H.

(30)

If external order o is to receive fish that was raised in farm l, then Constraints (29)
force this fish to meet the certification requirements h that are specified in the order.
Constraints (30) deal with internal orders in a similar way: if internal order o is
to receive fish that was bred in farm l, then this fish must meet the corresponding
requirements.

Internal-processing facility

∑
a∈A
∑
s∈S
∑
z∈Z
∑
q∈Q

T

∑
t=1
xINl,a,s,z,q,t,o ≤MδAa,o, a ∈ A,o ∈ OIN . (31)

An internal order is related to only one plant. Constraints (31) are used to enforce
that only the plant that is related to order o is allowed to deliver fish. If δAa,o is 1, then
order o is related to plant a; otherwise, this value is 0.

Domain of variables

xAl,a,s,z,q,t,o ≥ 0,

l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , T} , o ∈ Oεx,
(32)

xDCl,a,s,z,q,t,o ≥ 0,

l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , T + F} , o ∈ Oεx,
(33)

xINl,a,s,z,q,t,o ≥ 0,

l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , T} , o ∈ OIN ,
(34)

yAa,t,o ∈ {0,1} ,

a ∈ A, t ∈ {1, . . . , T} o ∈ Oεx,
(35)

yDCt,o ∈ {0,1} ,

t ∈ {1, . . . , T + F} o ∈ Oεx,
(36)
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yINt,o ∈ {0,1} ,

t ∈ {1, . . . , T} o ∈ OIN ,
(37)

µAl,a,s,z,q,t ≥ 0,

l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , T} ,
(38)

µDCl,a,s,z,q,t ≥ 0,

l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , T + F} ,
(39)

bl,a,s,z,q,t ≥ 0,
l ∈ L,a ∈ A, s ∈ S, z ∈ Z, q ∈ Q, t ∈ {1, . . . , TF} .

(40)

All of the variables are non-negative.

3.3. Augmented ε-constraint method

The augmented ε-constraint method (Mavrotas, 2009) is used to solve a model with
both objectives. First, a pay-off table is calculated in which each objective function is
optimized individually, providing the best possible value for each objective function.
The table also provides the worst value for each objective function, since the other
objective functions are prioritized first according to the lexicographic method (Hwang
& Masud, 1979). Let parameter rk be the range of objective function k in the pay-off
table.

In our implementation of the augmented ε-constraint method, the objective func-
tion that maximizes the total number of boxes that are delivered is made the primary
objective:

max∑
l∈L
∑
a∈A
∑
s∈S
∑
z∈Z
∑
q∈Q
(
T

∑
t=1
∑
o∈Oεx

JAxAl,a,s,z,q,t,o+

+
T+F
∑
t=1

∑
o∈Oεx

JDCxDCl,a,s,z,q,t,o +
T

∑
t=1
∑
o∈OIN

xINl,a,s,z,q,t,o)+

+λ (S2
r2
) ,

(41)

where Sk are the slack or surplus values, and the parameter λ is given in the interval
[10−6,10−3].

The objective function that maximizes the total value of the prioritized orders is
transformed into a constraint:

∑
o∈Oεx

Ko (∑
a∈A

T

∑
t=1
yAa,t,o +

T+F
∑
t=1

yDCt,o ) + ∑
o∈OIN

Ko
T

∑
t=1
yINt,o − S2 = ε2, (42)

where εk is calculated as follows:

εk = f
MIN
k + t(

rk
qk
) ,

where fMINk is the minimum that is obtained from the payoff table, and t is the
counter for the specific objective function. The number of intervals for objective func-
tion kth, qk, influences the potential number of different Pareto-optimal solutions that
can be found.
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4. COMPUTATIONAL STUDY

This section reports on our computational experiments using the mathematical model
that was provided in Section 3. The model was implemented using AMPL and solved
using CPLEX (Version 20.1.0.0 – 64-bit). The tests were run on a computer with
16 GB RAM and a 3.7 GHz Intel Core i5-9600K CPU with six cores.

4.1. Test instances

Based on the operations of our focal company, we created ten different test instances.
The instances varied in terms of the numbers of farms, plants, species, size classes,
qualities, certifications, diseases, and orders; the values for each of these elements
are presented in Table 1. While the number of plants, species, size classes, qualities,
certifications, and diseases are based on real-world data, the number of orders, the de-
mand and supply, and the order priorities were generated to span a range of potential
realistic situations.

Table 1. Test instances

Entity Instance
1A, 1B 2A, 2B 3A, 3B 4A, 4B 5A, 5B

Farm 2 3 4 5 6
Plant 2 3 4 5 6

Species 2 2 2 2 3
Size class 3 4 4 6 6
Quality 2 3 4 4 4
Diseases 2 3 4 4 5

Certifications 2 3 4 4 5
Orders 50 100 150 200 250

In the instances, the orders with low demand had a high priority, and the orders
with high demand had a low priority. The prioritization coefficients had values from
a discrete interval of integer numbers from 1 to 10 (where 10 was the highest). The
orders were divided into groups of ten orders, each requesting the same combination
of fish but a different number of boxes. The demand for each combination in an order
was set to be a random number between 100 and 1000 boxes.

The required days of delivery were set so it was possible to deliver all of the
orders on any day throughout the planning horizon. The requirements about diseases
and certifications were set so that all of the orders accepted all fish (independently
from its health status and certifications). The only source of incoming supply was
set to be farms. The initial inventories were set to zero for all of the plants and the
distribution center. The inventory capacity was set to zero for all of the plants, so any
supply that needed to be stored was required to be sent to the distribution center.

All of the orders allowed for a deviation of 10% from the number of boxes that
were requested for a given combination; this allowed for flexibility in demand. All
of the orders were set to be external orders. The weights for the delivery methods for
the external orders were set so that direct delivery was weighted higher than delivery
through the distribution center. Parameter T was set to 5, the lead time from a plant
to the distribution center was set to 1 or 2 days, and the longest lead time F was 2.
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The ten instances were divided into two sets on the basis of the balance between
the supply and demand for a given combination of fish. In the first set (A), the five
instances had more supply than demand, and in the second set (B), the five instances
had less supply than demand. The instances in the two sets were identical except for
their available supplies. The size of each instance is presented in Table 2.

Table 2. Problem size

Instance Variables Constraints
1A, 1B 30,562 28,934
2A, 2B 265,504 138,142
3A, 3B 935,378 337,942
4A, 4B 2,909,200 744,230
5A, 5B 7,834,500 1,608,570

4.2. Results

This section presents an analysis of the results for each problem instance as was found
by using the proposed solution method. We started by providing pay-off tables for the
instances in Tables 3 and 4. The payoff tables were calculated as described by Chowd-
hury and Tan (2004), meaning that we first optimized each individual objective sepa-
rately as a primary objective and then optimized for each remaining objective subject
to fixing the value of the current primary objective to its optimal value using a hard
constraint.

Table 3. More supply than demand

Instance Max Value Seconds
1A W1 W1 27,706 0.1

W2 275 0.1
W2 W1 27,706 0.1

W2 275 0.1
2A W1 W1 56,665 0.1

W2 550 0.3
W2 W1 56,665 0.1

W2 550 0.0
3A W1 W1 82,728 0.1

W2 825 0.4
W2 W1 82,728 0.1

W2 825 0.0
4A W1 W1 110,210 0.2

W2 1100 0.6
W2 W1 110,210 0.3

W2 1100 0.1
5A W1 W1 141,377 0.2

W2 1375 0.9
W2 W1 141,377 0.3

W2 1375 0.1
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Table 4. Less supply than demand

Instance Max Value Seconds
1B W1 W1 19,398 0.1

W2 252 2.9
W2 W1 18,756 267.7

W2 260 0.2
2B W1 W1 39,673 1.2

W2 506 3.4
W2 W1 38,301 31.9

W2 520 0.1
3B W1 W1 57,919 0.4

W2 763 6.1
W2 W1 56,186 1,551.3

W2 782 0.2
4B W1 W1 77,160 0.7

W2 1021 11.3
W2 W1 74,823 8,344.4

W2 1044 0.8
5B W1 W1 98,978 0.6

W2 1275 7.0
W2 W1 96 385 1,727.9

W2 1304 0.4

If a solution that was found in an instance was the same regardless of the order
in which the objectives were solved, then only one Pareto-optimal solution existed for
that given instance. In those instances with more supply than demand, the solutions
within each instance were the same for both objectives regardless of the order in
which they were solved. Both objectives had different values to maximize, but their
overall intention was to serve all orders. Having more supply than demand enabled
the possibility of fulfilling all orders and caused no conflict between the objectives.

The opposite could be observed for those instances with less supply than de-
mand: the solutions were affected by the order in which the objectives were solved.
The improvement of one objective led to a worsening of the other objective, which
was indicative of the existence of more than one Pareto-optimal solution. Having less
available supply than demand prompted the need to decide which order was most im-
portant to fulfill. The two objectives differed in how they treated orders; one objective
considered the number of boxes that were specified in an order to be an indicator of
importance, while the other objective focused on the value of the priority coefficient.

The time that was required to solve each instance was relatively low in those
cases with more supply than demand. When solving those instances with less supply
than demand, however, the solution time increased. This was especially evident when
maximizing the total number of boxes that were delivered to all orders (W1), while
the optimal total value of the fulfilled prioritized orders (W2) was used as a constraint.

Having observed that each of the instances with less supply than demand had at
least two Pareto-optimal solutions, a further analysis was conducted for this case. We
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found that the same number of orders was fulfilled regardless of the order in which
the objectives were handled; the only difference was in the individual orders that were
fulfilled. In general, when maximizing the number of boxes that were delivered first,
more low-priority orders were fulfilled as compared to when maximizing the total
values of the prioritized orders first. This was due to the fact that those orders with
low prioritization coefficients requested the greatest number of boxes for a given com-
bination of fish attributes. Also observed was the pattern that the highly prioritized
orders for a given combination were always fulfilled (independently from the order
in which the objectives were solved). This was due to the fact that higher-priority
orders requested relatively low numbers of boxes as compared to the available supply,
making it possible to fulfill many orders with high priorities.

To further investigate the conflict between the two objective functions for those
instances with less supply than demand, we next used the augmented ε-constraint
method to generate the Pareto fronts for the five instances with this characteristic.
This meant that the model was solved multiple times for each instance in order to
generate different Pareto-optimal solutions. In each run, we used a maximum time
limit of 700 seconds and specified an acceptable optimality gap. The acceptable op-
timality gap was set slightly higher (for instance, 5B, as this instance is larger and
more difficult to solve). Table 5 summarizes the settings that were used to solve each
instance.

Table 5. Optimality gap and grid points

Instance Optimality gap [%] Grid points
1B 0.01 9
2B 0.01 15
3B 0.01 20
4B 0.01 24
5B 0.05 30

Having instances of increasing problem sizes opened up observations into whether
any iteration was unable to meet the required optimality gap before its time limit was
reached. Table 6 gives a summary of the number of unique solutions for each instance,
the maximum and minimum optimality gaps that were reached, and the number of
times that the time limit was reached. Since the number of found unique solutions
was identical to the number of grid points that were used, the resulting approximate
Pareto fronts indicated that there may have been many more Pareto-optimal points
that were not found.

Table 6. Summary of instance solutions

Instance
Unique Max Min Number of times

solutions gap [%] gap [%] time limit reached
1B 9 0.01 < 0.001 0
2B 15 0.01 0 0
3B 20 0.017 0 1
4B 24 1.265 < 0.001 18
5B 30 1.161 0.033 18
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When creating the Pareto fronts for Instances 1B and 2B, all of the iterations
found Pareto-optimal solutions with optimality gaps of 0.01% or lower within the
time limit. As the size of the problem increased, fewer iterations could find a solution
that satisfied the optimality gap that was required within the time limit. This was
especially apparent for Instances 4B and 5B – both of which having 18 runs in which
the required optimality gap was not met within the time limit. At most, two of
the solutions had optimality gaps of more than 1%. This caused an issue regarding
the certainty of having actually found a Pareto-optimal solution since the gap to
optimality was so large. The estimated Pareto fronts for Instances 2B and 5B are
illustrated in Figure 4. For the other instances, the Pareto fronts had similar shapes
but with varying numbers of different points (as indicated in Table 6).

a) b)

Fig. 4. Pareto fronts for two individual instances, with W1 on first axis
and W2 on second axis: a) Instance 2B; b) Instance 5B

5. CONCLUDING REMARKS

This paper has presented a conceptual model of the allocation process that takes place
in a company in the fish-farming industry. The company allocates freshly harvested
fish to customer orders in order to satisfy the demand of its customers. A bi-objective
mathematical programming model was formulated to capture the essence of the plan-
ning problem, aiming to provide decision support for the planners at the company.

The two objectives that were modeled were as follows:
1) maximize total number of boxes of fish delivered to all orders,
2) maximize total value of fulfilled prioritized orders.

These two objective functions represent a realistic allocation dilemma. When review-
ing the existing literature, no previous multi-objective assignment model was found
that considered any similar allocation problem. To solve the instances of the math-
ematical model, the augmented ε-constraint method (AUGMECON) was used, as it
allowed us to find Pareto-optimal solutions in an efficient manner.
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A computational study was performed using ten different instances. The study
demonstrated an example where those orders that requested high numbers of boxes
were set to have low priorities, while those orders that requested low numbers of
boxes had high priorities. The results showed that, in a scenario with more supply
than demand, no conflict could be observed between the two objectives of the model.
This showed that, in cases where there is more supply than demand, a single-objective
formulation may be sufficient.

When there was less supply than demand, conflicts occurred; these resulted in
different Pareto-optimal solutions depending on which objective was solved first. In
these cases, using multi-objective optimization was appropriate. The computational
effort that was required to solve the instances also increased significantly when there
was less supply than demand. Approximate Pareto fronts were created for all instances
with lower supply than demand. The results showed that, as the size of the problem
grew, fewer solutions with optimality gaps that satisfyed the requirement were found
before the time limits were reached.

Solving a problem instance that is described with the model provides a plan for
the allocation of fish to customer orders for a given horizon. This plan can be used
to help planners determine how their supplies should be allocated to their orders;
this may help their companies make better trade-offs in situations where planning is
difficult (such as when the supply is insufficient to cover the demands from all of the
orders).

Additional objectives could have been included in our study. As an example,
a focal company may wish to maximize its profits in addition to the amount of fish that
is delivered or the number of prioritized orders that are fulfilled; this includes selling
their fish to the spot market for a better price. A limitation of our study was the lack of
economic data on the transactions. For future research, we also propose to investigate
the effect of uncertainty on supply forecasts. The quality and size of harvested fish
are only known probabilistically until the fish is slaughtered this uncertainty may
influence the quality of the planned order allocations.
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