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A B S T R A C T   

The integrity of international supply chain operations heavily relies on air transport services to facilitate the 
movement of goods and enable human interactions between its stakeholders. With the outbreak of COVID-19 in 
Europe around March 2020, air transport networks have been subject to profound alterations. Although the link 
between variations in air transport service levels and changes in user costs for network-wide travel has been 
analysed extensively, few studies have examined the extent to which severe network shrinkage events lead to a 
reduction in network connectivity, which is therefore difficult to predict. This paper investigates how the COVID- 
19 pandemic has structurally altered the European air transport network in 2020/21 and how these changes have 
deteriorated users’ ease when utilising network-wide air transport services. To do this, the paper estimates the 
change in average quickest path length at the airport level during different stages of this period. Results indicate 
there is strong heterogeneity in airports’ susceptibility to pandemic-induced network changes, with both regional 
variations and variations in the airline type serving individual airports. Furthermore, topological features of 
individual airports are found to determine airport susceptibility. The findings are discussed in terms of their 
implications for locational decisions in supply chain designs.   

1. Introduction 

In response to the COVID-19 pandemic, which reached Europe in the 
winter of 2020, governments have implemented a range of measures, 
including movement restrictions and temporary border closures, to 
contain the spread of the virus. These measures have affected the way in 
which operations in transnational supply chains are coordinated, as 
indicated, for example, by the unprecedented increase in online business 
meetings. However, some supply chains cannot fully abstain from in-
ternational connectivity, as they often rely on the timely accessibility of 
specialized services, expert staffing, and the rapid long-distance trans-
portation of intermediate or finished products. Airlines, the primary 
providers of such transport services in Europe, markedly downscaled 
their operations in 2020 (EUROCONTROL (2021); IATA (2020)), 
bringing a long-term growth phase in inner-European connectivity 
(Burghouwt (2007); Dobruszkes (2014)) to an abrupt halt and shrinking 
the structure of the European air transport network (EATN) on an un-
precedented scale. Consequently, the manner in which inner-European 
air transportation is organized may have changed fundamentally, 
bringing about wide-ranging implications related to human mobility, 
regional accessibility, and international supply chain operations reliant 

on the connectivity created by air transport services. 
Applying concepts of complex network theory, this paper analyses 

how these structural network changes have affected regional and 
network-wide connectivity patterns in 2020 and 2021. Special emphasis 
is placed on (i) the analysis of spatial variations of connectivity out-
comes among different regions in Europe, (ii) the differentiation of ef-
fects in regard to varying airline business models, and (iii) the 
explanation of effect size variations at the airport level. To this end, this 
study employs the concept of airport susceptibility, which is the change 
of an airport’s average quickest path length (Malighetti et al., 2008), in 
2020 and 2021 relative to corresponding values prior to the pandemic. 
The EATN is treated as a multi-layered network (Cardillo, 
Gómez-Gardeñes et al., 2013), and the definition of its spatial sub-
structures is derived from modularity maximizing community detection 
(Newman & Girvan, 2004). This study adds to the literature by mapping 
structural network changes during a historically rare period of transport 
network shrinkage to explain the drivers behind the heterogeneity of the 
system’s response and by discussing the implications of these changes 
with respect to locational supply chain design decisions. 

The remainder of this paper is organized as follows. Section 2 out-
lines relevant literature and Section 3 discusses the network theoretical 
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methods applied in this paper. Section 4 presents the results of the 
analysis in three steps. First, the long-term evolution of the EATN be-
tween 2004 and 2019 is briefly discussed to provide a reference for the 
analysis; second, the structural changes that have occurred in 2020/21 
are outlined; third, the corresponding connectivity effects are presented. 
Lastly, Section 5 concludes. 

2. Literature review 

Characteristics of air transport networks and their evolution over 
time have been studied at the global (Guimerà et al. (2005); Azzam, 
Klingauf, and Zock (2013); Verma et al. (2014); Woolley Meza et al. 
(2011)), regional (Dai et al. (2018); Lordan and Sallan (2019)) and 
domestic levels (e.g. Jia et al. (2014); Hossain and Alam (2017); Su et al. 
(2019)). This section considers the most relevant streams of literature to 
this study, beginning with the general evolution of the EATN and 
continuing to publications relevant in terms of methodological choice. 

A number of contributions describe the general evolution of Euro-
pean air transport since the industry’s deregulation at the end of the last 
century using supply statistics (e.g., Dennis (1994); Graham (1998); 
Dennis (2005)). A common finding of this literature is that network 
evolution in Europe was a two-stage process. Prior to 2000, primarily 
full-service carriers (FSC) drove network evolution by setting up radial 
systems to yield the benefits of hubbing operations (Burghouwt et al. 
(2003); Burghouwt and de Wit (2015)). In subsequent years, network 
development was dominated by low-cost carriers (LCC) scaling up their 
presence in Europe stepwise (Fan, 2006). Initially, LCCs focused their 
operations on north-south links connecting secondary airports within 
Western Europe (Dobruszkes, 2006), often bypassing major hub airports 
(Ramos-Pérez and Sánchez-Hernández 2014). They then diversified 
their operations to focus on connecting Western and Central-Eastern 
Europe (Dobruszkes (2009); Dobruszkes (2013)), and from 2010 on, 
they have increasingly also offered services from major hub airports 
(Dobruszkes et al., 2017). The continuous growth of LCC operations 
outside established FSC structures is thereby found to have led to a 
de-concentration of the EATN (Suau-Sanchez et al., 2016). 

Another strand of the literature applies methods of complex network 
theory to study the topological structure of air transport networks and 
their evolution. Using network snapshots on specific dates, authors have 
analysed network properties of individual airlines (Han et al. (2009); 
Lange and Bier (2019)), domestic systems (Guida and Maria (2007); 
Papatheodorou and Arvanitis (2009); Jimenez, Claro, and Jorge Pinho 
de Sousa (2012)), or, more holistically, the European system (Paleari 
et al. (2010); Tranos (2012)). A frequent finding is that the networks 
studied show features similar to those of so-called “small-world” (Watts 
& Strogatz, 1998) and “scale-free” networks (Barabási and Albert 1999), 
with relatively small average topological distances between all network 
airports and a strong heterogeneity in connectivity pattern across these 
airports. Using a longitudinal perspective, S. Zhang, Derudder, and 
Witlox (2015) study the drivers behind the structural changes of the 
EATN between 2003 and 2009 and identify two counteracting network 
dynamics. While the growth of hub-and-spoke structures promoted by 
FSC airlines has led to a spatial concentration of flights in the network, 
the emergence of LCC airlines has formed triadic structures and thus 
contributed to network densification. Similarly, Wandelt et al. (2019) 
compare the evolution of the EATN with the growth in other air trans-
port networks and suggest that the EATN is subject to a gentle but 
continuous densification process. Sun et al. (2015) investigate the 
temporal evolution of the European airport network by analysing reg-
ular variations in network properties over time. Their findings indicate 
that network properties vary substantially by season and day of the 
week, implying that a longitudinal analysis of network properties must 
consider such a pattern. 

A different research grouping is concerned with the analysis of the 
extent to which air transport networks facilitate network-wide travel. 
Various approaches to measuring connectivity - here defined as the 

extent to which an airport is connected to the rest of the network and 
hence facilitates network-wide journeys - have been proposed in the 
literature (Burghouwt and Redondi (2013); ITF (2018)). A general 
finding in these studies is a strong heterogeneity in connectivity across 
different airports (Malighetti et al. (2008); Lee et al. (2014)). In the 
context of longitudinal data, research has focused on long-term con-
nectivity evolution during stages of network growth (Allroggen et al. 
(2015); Cattaneo et al. (2017); Mueller and Aravazhi (2020)). This 
literature suggests that there has been substantial growth in 
network-wide connectivity in the decades prior to the outbreak of 
COVID-19. However, empirical literature that analyses connectivity ef-
fects during network shrinkages remains extremely sparse, with a 
notable exception being Woolley Meza et al. (2013). Computing the 
increase in a path length-based measure due to network shrinkage 
caused by the 2010 eruption of the Eyjafjallajökull volcano and 
September 11th, 2001, terrorist attacks, the authors find that such 
events have heterogeneous impacts on airports’ connectivity that 
correlate with the topological characteristics of individual airports. 

Methodically most relevant are several recent contributions that 
apply more advanced concepts of complex network theory. First, several 
studies have explored network topology based on the view that complex 
systems can be represented as multi-layered networks (see Aleta and 
Moreno (2019) for a recent review). As indicated by Cardillo, 
Gómez-Gardeñes et al. (2013), the topological properties of aggregated 
networks, in this case the EATN, are the consequence of progressively 
merging individual network layers (i.e., airline networks). Thus, 
studying the aggregated network without considering the special feature 
of its building blocks might disguise important relationships. Applying a 
multi-layer perspective to the European airport system in 2014, for 
example, Lordan and Sallan (2017) detect the existence of a hierarchical 
airport structure in the EATN. Second, with a special interest in a more 
fine-grained spatial partitioning of a network, a few contributions apply 
community detection algorithms to identify ‘natural’ subcomponents 
within the network. A general finding in this stream of literature is that 
the European airport network can be subdivided into multiple 
sub-modules, characterized by denser interactions (i.e., number of 
flights) among themselves than with the rest of the network. The de-
marcations of these airport communities are identified to typically 
follow national borders clustering together airports in close geograph-
ical vicinity into supra-national constructs (Malighetti et al. (2009); 
Gurtner et al. (2014)). This finding is significant as it allows researchers 
to derive geographically coherent segments of the network based on 
existing topological features rather than on arbitrary segmentation of 
the network and hence might provide a consistent approach to the study 
of network evolution in a spatial context. 

Finally, a body of literature has started to emerge that covers several 
dimensions of the COVID-19 pandemic’s link to the air transport system. 
Publications have analysed air transport’s contribution to the virus 
spreading globally (Christidis and Christodoulou (2020); Y. Zhang et al. 
(2020)), related mitigation strategies (Chen et al., 2020), and potential 
recovery patterns (Gudmundsson et al. (2021); Serrano and Kazda 
(2020); Bauer et al. (2020)) and have conducted early assessments of 
changes in air transport geography due to the pandemic (Sun et al., 
2020). 

To summarize, the literature review indicates that the nature and 
evolution of the EATN have been studied predominantly in a cross- 
sectional context or during phases of network growth. Empirical 
studies on structural changes and their network-wide, as well as spatial 
connectivity implications during periods of network shrinkage remain 
widely absent. This paper provides such an analysis, using the network 
alterations that have occurred during the COVID-19 pandemic as a case 
study. 

3. Methods 

In this paper, the EATN is represented as a network with N nodes 
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(airports) that takes the form of a weighted N × N adjacency matrix W, 
where its elements wij represent the number of weekly direct scheduled 
passenger flights x between any two airports i and j located within 
Europe. To analyse the structural evolution of the EATN through time, 
static snapshots Wt for the period between 2004 and 2021 are derived. 
Every snapshot Wt represents the network with only the set of airports 
and flights that appears in t as sourced from the ‘SRS-Analyzer Flight 
Schedule Database’ (SRS 2021). Wt is constructed as an asymmetric 
matrix with elements wij = x if x ≥ 1 and wij = 0 otherwise. Thresh-
olding Wt yields the corresponding unweighted adjacency matrix At, 
with its elements aij = 1 in cases of 

⃒
⃒wij

⃒
⃒ ≥ 1, and aij = 0 otherwise (da 

F. Costa et al., 2007). Various structural network characteristics can be 
derived from A and W (Boccaletti et al. (2006); da F. Costa et al. (2007); 
Barthélemy (2011)). An overview of the basic network theoretical 
metrics, their standardization (Zanin et al. (2018)) and other concepts 
applied in this paper is provided in Annex 1. To unveil the role that 
different airline types, play in the evolution of the aggregated EATN, this 
paper derives two additional subsets for each Wt. The first comprises 
only flights operated by LCCs (as classified by (SRS 2021)), in this paper 
termed the ‘LCC layer’, and the second contains all flights not operated 
by LCCs, called the ‘FSC layer’. 

The connectivity of an airport i in a certain network snapshot Wt is 
proxied by the quickest travel time approach proposed in Malighetti 
et al. (2008). For each network airport j ∕= i, the specific travel path is 
identified for which the summation of in-vehicle travel time and even-
tual periods of waiting for connecting flights is minimal, termed the 
‘quickest path length’ LQ. To also measure the connectivity effects of 
weakly integrated airports, LQ is derived based on weekly network 
snapshot Wt ranging from Mondays 00:00 to Fridays 24:00, and no 
bound is established on total maximum travel times. It is further 
assumed that indirect travel paths require in general a minimum 
connection time of 30 min. For remotely located airports, this minimum 
connection time is reduced to 10 min (EC 2019). 

To assess connectivity changes at the nodal level, the concept of the 
airport’s susceptibility (Woolley Meza et al., 2013) is used and defined 
in this paper as 

χi = mi

(
Lt+n

Q

)
− mi

(
Lt

Q

)
, (1) 

Namely, it is the difference in typical quickest path length of an 
airport i between two periods, with mi denoting the median across all 
values LQ for a fixed origin airport i. Note that χi is derived using only 
those destination airports that are connected to the network in both 
periods. 

To investigate the evolution of the EATN over time from a spatial 
perspective, a partition of the network into reasonable sub-components 
is needed, which is (i) non-arbitrary and (ii) sufficiently stable over time 
to foster longitudinal comparisons. As for the former condition, this 
paper analyses the community structure of the EATN resulting from the 
maximization of modularity (Newman and Girvan (2004); Blondel et al. 
(2008)) and hence is not biased by arbitrarily selected geographical 
bounds. Fig. 1 suggests that the resulting clusters are spatially coherent 
and hence are suitable to serve as geographical subdivisions of the 
network. 

As for the necessary stability of network partitions over time, lines of 
community succession of 32 independently computed, seasonal1 

consensus community structures (Bassett et al. (2013); Lancichinetti and 
Fortunato (2012)) are established using the inclusion value method 
proposed in Bródka et al. (2013). Results suggest an inherent stability of 
the community structure, with the majority of the occurring evolu-
tionary events referring to the temporary disconnect of individual air-
ports from the network. Only a few structural effective evolutionary 
events (e.g., merging of French and Iberian clusters) can be found, but 

interestingly, such events embed or extract communities in their entirety 
into other clusters rather than breaking them into multiple subgroups. A 
detailed assessment of the similarity of the partitions over time, based on 
the information-theoretical measure of the variation of information 
(Meilă, 2007) also quantitatively confirms this longitudinal stability in 
community structure. Building on the aforementioned findings, the 
spatial analysis in this paper is grounded in the geographical de-
marcations of the network as defined by the airport communities pre-
sented in Fig. 1. To enrich the analysis, individual clusters (e.g., French, 
Turkish) are consistently treated as separate communities even in 
snapshots in which they are embedded in other clusters.2 

4. Results 

4.1. Long-term evolution of the EATN and its layers prior to the COVID- 
19 pandemic 

The long-term evolution of the EATN can be traced to the interplay of 
opposing, evolutionary processes within its two layers. The substantial 
and continuous growth of the LCC layer accompanied the stagnation of 
the FSC layer (Fig. 2, Panels A–C). Especially after the global financial 
crises of 2007–2008, gains in the EATN’s size are predominantly 
attributable to the advances in the LCC layer. Despite an overall network 
densification process, the EATN and its layers remain extremely sparse 
networks, with only 2%–6% of all city-pairs connected by a direct flight 
(Table 1). Density in the FSC layer is thereby considerably lower than in 
the LCC layer, with flights being more concentrated on individual city- 
pairs in the former than in the latter. Regardless of this low density, a 
journey in 2019 between two randomly picked airports requires only 2.5 
to 3.0 connecting flight segments, emphasizing the highly organized 
nature of the layers. Considering the existing dissimilarities in network 
sizes, these differences in the directness of travel between the EATN and 
its layers are only minor (i.e., z-scores). The diverting clustering values 
(both absolute and standardized) between the two layers are indicative 
of different structural network organizations. Applying the concept of 
clustering in weighted graphs (Barrat et al., 2004) yields that triplets in 
the EATN and especially the FSC layer are often formed by 
high-frequency links, which is typical for networks where many spoke 
airports are simultaneously linked to at least two interconnected (hub-) 
airports. 

Beyond aggregated network size statistics, Panel D maps changes in 
the distributional form of link flux (w), degree (k), and strength (s) for 
the EATN. As mentioned by others (e.g., Woolley Meza et al. (2011)), the 
tailing distributions reflect the strong structural heterogeneity in the 
network, with a few high-connectivity observations and a majority of 
nodes/links with weaker network integration. A comparison with 
randomly organized networks (i.e., networks of equal size but unpre-
served degree structure) manifests this high grade of network organi-
zation. However, in contrast to earlier reporting, statistical testing 
(Gillespie (2015); Clauset et al. (2009)) does not yield evidence that any 
of the distributions (including layer-specific distributions) follow a 
power-law over multiple orders of magnitude. Instead, decay at partic-
ularly high-spectrum airports is faster than linear. In an evolutionary 
context, differences in distributions over time in the EATN are statisti-
cally significant (Kolmogorov-Smirnov test), as a general shift towards 
higher degree/strength airports occurred. For a comparison of 
layer-specific distributions, the reader is referred to Annex 3. 

Panel E maps the corresponding evolution of the network-wide 
connectivity based on the changes in the average quickest path statis-
tic (LQ) over time. Accordingly, in the period from 2004 to 2019, the 
average minimum travel times between pairs of airports in the EATN 

1 Network snapshots 2004–2019 in line with IATA-seasons (IATA (2019)). 

2 For supplementary information about the diversity in communities’ struc-
tural properties, flow volumes and airline dominance, the interested reader is 
referred to Annex 2. 
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decreased by approximately 10% from 550 to 500 min (Panel E), with a 
strong variation of values at the individual airport level. This connec-
tivity increase is robust even if potential effects induced by network size 
alterations are considered (inset Panel E). In fact, such a perspective 
yields that connectivity gains in the EATN are primarily driven by im-
provements in the FSC layer. Note that a ratio of 1 between the observed 
and randomized measures as such indicates that the temporal coordi-
nation between flights has not been an intended design feature in the 
planning process of the network. It can therefore be concluded that 
temporal coordination is of minor concern in the LCC layer and that 
variations in absolute values in this layer (main panel) are largely 

attributable to network size effects and related alterations in spatial 
coverage. 

Regarding variations in connectivity across different regional parts 
of the EATN, Panel F allows for several observations. First, minimum 
travel times from different parts of the network vary substantially. 
Average journeys across Europe from the best-connected community in 
2019, the Italian cluster, involve a travel time of on average 430 min, 
whereas trips from the average Eastern-European airport last a mini-
mum of 605 min. As travel time-based measures are sensitive to the 
geographical location of airports in the network, it is not surprising that 
more centrally located communities achieve better values. However, a 

Fig. 1. Consensus community structure EATN and community succession over time. 
Note: The consensus community structure is derived based on 1000 randomized community realizations per snapshot. The map to the left shows the network 
snapshot of the summer season of 2004. Airports are represented by circles whereby the radius of the circle is proportional to airport strength (log). Airport colouring 
indicates community membership and is consistently applied in visualizations throughout this paper. The alluvial diagram to the right represents community 
membership of airports as flows over time. Vertical bars are proportional to the number of airports affected. Notation of communities is done according to the 
geographical location in Europe. The ‘inactive’ bar denotes airports disconnected from the network in a specific snapshot. Communities |G| < 5 are omitted to 
increase perceptibility. 

Fig. 2. Network evolution 2004–2019. 
Note: Panels a) - c) depict the evolution of network size statistics (airports, links, and flights) in the EATN and its layer. Based on snapshots of the first calendar week 
in April and November each year. Panel d) depicts distributions of link weights (w), airport degree (k), and airport strength (s) based on April 2004 and 2019 for the 
EATN. Distributions for random network realizations with size statistics equal to empirical networks of April 2019 but with unpreserved degree sequence (Bernoulli- 
type) as a reference in grey. Panels e)-f) depict evolution in average quickest path length over time for EATN, layers and communities. The insets provide the ratio 
between the empirical networks and the median values source for random network realizations with preserved degree and strength sequence. Departure times remain 
thereby unchanged but arrival times at the ‘randomized’ destination nodes are adjusted according to the corresponding flight distance between the nodes. 
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comparison with the results sourced for random network realizations 
shows that this effect is somewhat offset by the apparently better tem-
poral coordination of flights in communities such as the Greek or Nordic 
cluster. Further, the majority of clusters are found to have improved 
connectivity over time in line with the development on the aggregated 
network level. The extraordinary development for the Eastern-European 
cluster highlights the progressive integration of its airports with the rest 
of the EATN over time. 

4.1.1. Structural network changes during 2020-21 
The impacts of the pandemic on the structural evolution of the EATN 

in 2020 and 2021 were pronounced. Mapping network size statistics for 
2020/21 relative to the values for the corresponding snapshots of 2019 
(Fig. 3, Panels A–C) indicates the existence of distinct stages of network 
evolution in 2020/21. In a first phase, lasting until the beginning of 
March 2020, the network largely resembled a standard seasonal pattern. 
This was followed by a period of rapid and extensive network shrinkage 
until mid-April 2020, as airlines first adjusted to the outbreak of COVID- 
19 in Europe. At the peak, the number of daily flights operated in the 
EATN was 90% below the normal levels, serving around 85% fewer 
direct city-pairs and leaving approximately 270 airports, about 50% of 

the 2019 network nodes, temporarily disconnected from the EATN. The 
airports abandoned at this stage were already characterized by relatively 
low network integration prior to the pandemic. Their airport degree and 
strength in 2019 was approximately 50% below the network-wide me-
dian. This finding is consistent for both layers, suggesting that airlines 
constrained their operations to their core networks and over propor-
tionally abandoned ‘peripheral’ airports. Businesses reliant on such 
airports to engage in physical interactions with other supply chain 
stakeholders were literally disconnected from them at this stage. 

From mid-April to mid-July 2020, a phase of partial network re-
covery followed, in which the EATN reconnected around 90% of all 
network nodes and hence at least theoretically enabled supply chains to 
physically interact across Europe. This recovery of essential network 
connectivity was accompanied by a less pronounced increase of city 
pairs connected by direct flights (65% of 2019) and an even weaker 
recovery in overall flight volumes (45%). In the subsequent phase, be-
tween August and the first weeks of November 2020, the network 
remained at these activity levels and followed the standard seasonal 
pattern. The network density in this period approaches approximately 
0.02 for the EATN (0.03 LCC; 0.01 FSC) and is thereby approximately 
35% below the corresponding 2019 values. The matching reduction in 

Table 1 
Comparison network properties of 2004 vs. 2019.  

Network  Network metrics 

〈k〉 〈s〉 〈w〉 D  〈C〉 L      

Wt  Wrand
t  z-score Wt  Wrand

t  z-score 

EATN04  12 382 15.9 0.019 0.45 0.16 ± 0.007 39.3 3.1 2.9 ± 0.012 13.9 
EATN19  21 493 11.8 0.034 0.48 0.21 ± 0.009 30.5 2.7 2.7 ± 0.008 6.5 
LCC04  7 134 8.9 0.012 0.28 0.12 ± 0.012 13.3 2.8 3.0 ± 0.026 − 7.5 
LCC19  21 300 6.9 0.057 0.39 0.22 ± 0.009 18.5 2.5 2.6 ± 0.009 − 8.2 
FSC04  10 350 16.4 0.019 0.45 0.15 ± 0.012 33.7 3.2 3.0 ± 0.014 14.3 
FSC19  11 328 15.1 0.019 0.47 0.16 ± 0.012 33.3 3.0 3.0 ± 0.013 1.0 

Note: Network snapshots are based on the first week of April in both years. Average link weights calculated for one-directional city-pairs and densities in 2004 derived 
based on airport count in 2019. Columns ‘Wt’ are calculated for the original network/layer, Columns ‘Wrand′

t report the mean and standard deviation of the metric 
obtained from 1000 random network realizations with preserved degree sequence. For definition and interpretation of z-scores see Zanin et al. (2018). 

Fig. 3. Evolution of network size and nodal distributions in 2020/21. 
Note: Panels a) - f) show network size statistics as a ratio between the 2020/21 and corresponding 2019 daily network snapshots and thereby free from seasonal 
alterations in network size. Insets in Panel b) - c) depict the underlying seasonality in 2019 as reference values. Panels e) - f) depict spatial perspective with the 
colouring of selected communities suppressed to increase perceptibility. 
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average clustering (Panel D), however, is found to be attributable to 
alterations in network size (i.e., z-score) and hence not to an extensive 
structural reorganization of local embeddedness in the EATN and its 
layers. The average shortest path length (L) increases in the LCC layer by 
0.3 and in the EATN/FSC layer by 0.5. Even corrected for size effects, 
there is a sizeable reduction in the directness of travel as compared to 
2019. Further, at the nodal level, network shrinkage has not markedly 
changed the hierarchical pattern of nodal network integration. That is, 
airports that were characterized by a low average shortest path length, 
high degree, and high strength prior to the pandemic are typically those 
that remain the most closely connected to the network during the 
pandemic. This signals in sum for businesses dependent on passenger 
and cargo transport with scheduled air services, that enterprises located 
at non-hub airports might have experienced the strongest negative 
implications. 

Starting in mid-November 2020, a second distinct contraction period 
occurred in which the network temporarily and substantially shrunk. 
This network shrinkage coincided with lockdown periods in several 
Western European countries (see Table 2). Reductions in network den-
sity and service frequencies were distinct, while the number of discon-
nected airports increased modestly, suggesting higher indirectness of 
travel, especially for customers travelling between non-hub airports. 
Apart from a temporary comeback between December 2020 and 
January 2021, this network stage persisted until early May 2021, when 
network properties started to approach the levels of fall 2020 again. 

Concerning the two layers in the network, the LCC layer seems to 
have adjusted more dynamically in 2020/21 than the FSC layer in both 
phases of shrinkage. The most striking difference between the two layers 
is (1) the extent to which airports became disconnected from the layers 
during shrinkage in general and (2) the magnitude in link and frequency 
removal in the LCC-layer during the second period of shrinkage. LCCs 
appear much more willing and able to downsize and adjust network 
structures (Panel A). Travellers dependent on airports exclusively served 
by low-cost airlines are therefore more likely to be cut off from air 
transport services during extensive network shrinkage than those 
dependent on airports with FSCs. Further, Panels B and C suggest that 
alterations in the LCC layer in terms of links and flows occurred 
approximately proportionally to each other. In contrast, the structure of 
the FSC layer appears consistently closer to normal in a topological (i.e., 
links) than a weighted (i.e., flights) perspective. This signals the ten-
dency of FSCs to preserve topological network structures during phases 
of shrinkage, which is indicative of the continuation of hub-and-spoke 
operations in this layer. 

Assessed in a spatial context, network size fluctuations in 2020/21 
are found to vary strongly across regions, which is symptomatic of the 
regionally different approaches to dealing with the COVID-19 pandemic. 
For example, while more than 50% of all French cluster airports lost 

service for an extended period between April and June 2020, other 
communities, such as the Eastern-European cluster, remained much 
more intact, ensuring basic accessibility by air for 75% of its network 
nodes (Panel E). Furthermore, the second incident of network shrinkage 
from November 2020 appears to be primarily linked to airports served 
by LCCs located in the British, French, and Central-European clusters. As 
for the changes in flows to and from airports of different communities, 
Panel F indicates that the British and Central-European clusters have 
been particularly affected throughout the pandemic. For instance, while 
the number of flights from Eastern-European airports in the second half 
of 2020 reached around 70% of 2019 levels and approached 90% to-
wards July 2021, the corresponding values for British cluster airports 
remained below 50%. 

Table 2 provides a selection of major 2020/21 European regulations 
and policy initiatives that are relevant to air travel, such as the types of 
lockdowns and different forms of travel restrictions. One can note that 
this timeline of policies correlates with the measured alterations in the 
network properties shown in Fig. 3. In particular, Panels E and F suggest 
that the policies have different timings, strategies, and stringencies in 
the different areas of Europe. For example, the distinct network 
shrinkages in the British, C-European, and French airport communities 
at the end of 2020 coincide with the re-imposition of lockdown measures 
in multiple Western European countries. Instead, no nationwide lock-
downs were reported in this period in Russia (i.e., the E-European 
cluster). In this context, network alterations in the case of the pandemic 
are consequential to the decision-making processes of national govern-
ments. Hence, the governments’ individual strategies, but also their 
overall attitudes towards the pandemic, have directly determined the 
degree to which the COVID-19 pandemic has affected air freight trans-
port and passengers’ air travel ease. 

A supplementary analysis on the community pair level (Annex 4) 
indicates that link structures (i.e., the number of direct city pairs) and 
their flows within a community appear generally less affected by 
network shrinkage than links between different airport clusters. This 
phenomenon is especially pronounced in the Eastern-European, the 
Greek and the Nordic airport community. This might reflect airlines’ 
general tendencies to focus during crises on operations in their indi-
vidual ‘core-geographies’ and might be further enhanced by national 
governments ensuring basic levels of connectivity within the bounds of 
their jurisdictions (Abate et al., 2020). 

4.1.2. Connectivity analysis 
The question remains of how the network changes described above 

have affected network-wide connectivity. To assess this, Fig. 4 (Panel A) 
compares the typical quickest path length in 2020/21 with the corre-
sponding values from 2019 (weekly perspective) and maps the resulting 
network-wide airport susceptibility (Eq. (1)) over time. According to 

Table 2 
Selection of travel restrictive policies/actions affecting major European countries in 2020.  

Week Policy action Country 

6 Advise against unessential travel to mainland China France, UK 
11 Declaration of nation-wide lockdown 

Declaration of partial lock-down measures 
Advise against all but essential travel to Italy 
Suspension of all flights to Italy 
Border closing for non-citizens/residents 
Suspension of entry from selected European countries 

Italy 
Several 
UK 
Spain, Portugal 
Denmark, Poland, Czech Rep. 
US 

12–13 Suspension of all civil flights 
Border closing for non-citizens/residents 
Announcement of ban of non-essential travel 
Declaration of nation-wide lockdown 

Italy 
Germany, France, Russia 
European Union 
Several 

23–27 Reopening of borders for European tourists 
Announcement of lifting travel restrictions within EU 

Italy, Spain 
Germany, France, UK 

40–44 Reimposition partial and nation-wide lockdowns Spain, UK, Italy, France, Belgium 
51 Imposition of travel restrictions on United Kingdom Several 

Note: Adapted from Kantis, Kiernan, and Bardi (2021). 
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that, airport susceptibility in the EATN and the FSC layer between April 
and June 2020 reached values of χ ≈ 1000. This implies that the travel 
time required for a journey between two randomly picked network 
airports in 2020, was on average 17 h longer than in the previous year. 
Hence, the total average travel time necessary more than tripled, and 
most airport pairs still connected to the network at this stage could not 
be reached without at least one overnight transfer. This highlights the 
substantial level of network deterioration and that network-wide air 
travel at this stage was infeasible. After partial network recovery in July 
2020, average susceptibility values declined to χ ≈ 240, indicating that 
inner-European air connectivity was still substantially weakened. 

Panel A further hints that the deterioration in connectivity in the LCC 
layer from April to May 2020 and again starting at the end of the year is 
much more pronounced than in the FSC layer. This corresponds to the 
disproportionate shrinkage of the layer at these times (Fig. 3). Apart 
from these scale effects, susceptibility appears qualitatively similarly 
distributed in the EATN and its layers within the same time snapshot 
(Panel B). This suggests that despite their different structural properties, 
both layers and, in their aggregation, the EATN underwent shrinkage 
processes according to fundamentally similar processes. 

Assessing in more detail the association between airport suscepti-
bility and the extent of network shrinkage, the inset of Panel A suggests 
the existence of an exponential relationship for the EATN and both 
layers. As long as the reduction in the number of flights and direct links 
during network shrinkage does not exceed a critical level, demand can 
be rerouted over the remaining links and frequencies such that there are 
only minor implications on average travel times. However, the more 
flights are eliminated from the network, the greater the impact of time 
lost due to greater indirectness and/or deterioration of temporal coor-
dination in the network and the more dynamic airport susceptibility 
grows. 

Panel C maps the evolution of susceptibility in a spatial context per 
community over time, and Panel D supplements an intra-community 
perspective (i.e., only the flow between airports within the same com-
munity are considered). Even though following a common trend, sus-
ceptibility does vary across geographies. For instance, the Italian cluster 

appears on average to be less susceptible, whereas the Turkish cluster in 
April 2020, the Eastern European cluster during the fall 2020 and the 
British cluster in 2021 seem exceptionally affected. Detailed analysis 
reveals that case specifics explain these particularities. The relatively 
centric location of Italian airports on the European continent translates 
into relatively short topological travel distances to other network nodes 
and hence limits their general susceptibility. For the Turkish commu-
nity, a far-reaching cutback of domestic and international services in 
April coinciding with the Easter holiday period in many European 
countries, during which flows to the Turkish community in 2019 were 
relatively high, dramatically increased susceptibility. Susceptibility 
values indicate that the Turkish cluster at that stage was largely isolated 
from the rest of the network. The driver behind the Eastern-European 
results relates to a change in international connectivity at many clus-
ter airports during 2020. Some 18 airports (30% of the total) lost all 
direct flights to airports outside their cluster, leaving only 20% of all 
Eastern Europe airports with such links. This increased average travel 
times from many community airports and hence substantially increased 
susceptibility. 

On the contrary, the Eastern-European airports performed consid-
erably well from a purely regional, intra-community perspective (Panel 
D). As for the Greek cluster, susceptibility values do not exceed a 
maximum of χ ≈ 160 for any period in 2020. This is substantially below 
the value of, for example, the British cluster, suggesting the existence of 
distinct spatial differences in the distribution susceptibility. These het-
erogeneities are found to correspond well with the divergences in 
structures and flows of different clusters. As noted earlier, intra- 
community structures of the Greek and Eastern-European clusters, for 
example, have been relatively modestly affected through 2020/21, 
whereas flows within the British cluster have more deteriorated (Annex 
4). 

Susceptibility is further found to vary significantly at the airport 
level. Based on a range of high and low connectivity airports in 2019 and 
their corresponding susceptibility values for selected dates in 2020, 
Table 3 demonstrates several aspects. First, airport susceptibility of 
major hub-airports, such as Munich or Amsterdam, is relatively limited. 

Fig. 4. Evolution of network connectivity in 2020/21 and dependency structures. 
Note: All panels covering only airports present in both 2020/21 and 2019 snapshots. Panel a) depicts the evolution of median airport susceptibility from January 
2020 to June 2021 relative to 2019 and the inset shows the functional relationship with network flux. Panel b) depicts the cumulative probability distributions of 
airport susceptibility for July 17th, 2020 and Panels c)-d) map the evolution of airport susceptibility in a spatial context (Panel c) and for intra-community flows only 
(Panel d). Panels e)-f) depict airport susceptibility as a function of inverse airport strength and average shortest path length based on the network snapshot cor-
responding to July 17th, 2020. 
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While the network-wide mean approached 240 min, susceptibility 
values for the best integrated European airports (i.e., overall lowest LQ in 
2019) in July 2020 stayed below 120 min (Column 6). Second, the 
geographical location of an airport might not be a sufficient determinant 
of airport susceptibility. For example, while the susceptibility of 
Frankfurt July 2020 was at a modest 60 min, the geographically close 
Leipzig/Halle airport reached a value of 890 min. On the other hand, the 
extremely remotely located Norwegian airport of Båtsfjord achieved 
values comparable to those of Copenhagen. Existing contractual agree-
ments between airlines and national governments to supply subsidized 
air transportation (i.e., Public Service Obligations) kept service levels 
stable during crises and dampened susceptibility. As compared to the 
much larger airports of London City or Leipzig, existing PSO- 
arrangements at Båtsfjord and Vilhelmina airport prevented them 
from becoming disconnected even through the extreme stages of 
network shrinkage (Column 5). 

As suggested by Woolley Meza et al. (2013), airport susceptibility 
might instead adhere to a pattern of nodal network integration. For 
instance, the higher the strength of an airport during the COVID-19 
pandemic, the more alternative travel paths exist over which flows 
could be redirected and hence the lower the airport’s susceptibility. A 
fixed-effects estimation is employed to rate the associations between 
airport susceptibility and nodal characteristics in 2020, considering 
changing activity levels in the network. The relationship is modelled as 
follows: 

χit = β0 + β1sit + β2lit + β3wt + uit, (2)  

where i indexes an airport and t captures a certain network snapshot; χit 
is the log of susceptibility, sit denotes log of the nodal strength, and lit the 
log of average shortest path length; wt is the log of the total of all flights 
in the network to account for overall changes of activities in the 
network, and uit reflects the idiosyncratic error term. The analysis uses 
all weekly network snapshots from 2020 and covers all airports that 
were continuously connected to the network in this period. The 
dependent variable is the airport-specific susceptibility values as 
calculated in this paper (Eq. (1)). The independent variables are the 
nodal characteristics for the individual airports and the corresponding 
network snapshot (see Annex 5 for descriptive statistics). 

The parameters of interest are estimated as β1 = − 0.19 and β2 = +

1.93, confirming that airports with high strength and/or those located 
topologically close to the gravity of the network are typically less sus-
ceptible (Annex 5). Further tests on individual cross-sections reveal that 
β1 varies ( − 0.4 ≤ β1 ≤ 0) over the year. The negative correlation be-
tween node strength and airport susceptibility weakens (i.e., β1→ 0) the 
more the network deteriorates. During minor stages of network 
shrinkages (e.g., fall 2020), the number of airports connected to the 
system is high and the reduction in density and link weights appears to 

have relatively more effect on weakly integrated airports. As shrinkage 
progresses, however, the network reduces to a ‘core system’ in which 
characteristics of the remaining airports and their susceptibility 
converge. 

Individual panels for both network layers (Annex 5) confirm the 
correlations found for the EATN. The sensitivity of airport susceptibility 
to average shortest path length in the LCC layer is more pronounced, but 
the dependency on the overall number of network flights is less distinct 
than in the FSC layer. This finding is consistent with the difference 
mentioned above in the temporal coordination between both layers. 
Reducing the number of flights decreases the temporal coordination in 
the FSC layer and thereby increases journey times. In contrast, the sheer 
existence of temporal coordination diminishes the effect of increased 
path length. In the absence of coordinated transfers (i.e., in the LCC 
layer), no such effects can occur. 

5. Discussion and conclusion 

This paper has analysed the evolution of the EATN during the 
COVID-19 pandemic in 2020/21 using network-theoretical concepts. It 
has emphasised the examination of changes in network connectivity 
relative to long-term evolutionary processes from a spatial and multi- 
layer perspective. This multi-perspective approach contributes towards 
a better understanding of how dynamics in different sub-entities account 
for changes in structural features of the aggregated network. Conse-
quently, the paper identifies simple indicators that inform a location’s 
sensitivity to air transport network alterations and provides insights into 
how the exposure of supply chains to future network shrinkage events 
could be reduced. For example, the results suggest that weakly inte-
grated airports are over-proportionally susceptible to network 
shrinkage. The distribution of susceptibility is unequal across airports 
and appears to follow exponential patterns. Therefore, rather than using 
airport existence as a binary assessment criterion, businesses reliant on 
air transport that are evaluating a location’s potential for future business 
activities might give more weight to the actual level of services available 
at nearby airports. 

This analysis focuses on air passenger transport networks. Their al-
terations are relevant to the management of supply chains in at least two 
ways. First, scheduled passenger flights have transported approximately 
50% of the global air cargo in the pre-COVID-19 era in the belly cargo 
(Statista.com, 2021). Therefore, this paper’s discussion of the network 
shrinkage and its implications for a loss of network connectivity is 
relevant to other pandemic-related phenomena associated to supply 
chains, such as rising lead times (UNICEF, 2020) and increasing air 
freight rates due to temporary capacity shortage in the air freight market 
(IATA, 2021). Second, corporate air travel has historically constituted a 
substantial share of the aggregated air passenger demand. This is 

Table 3 
Susceptibility values 2020 and airport characteristics.  

Airport   χi  Airport characteristics 

Country L2019
Q  (1) (2) (3) s2019  s2020  L2019  L2020  

Munich Germany 245 0 380 80 2645 770 1.8 2.1 
Frankfurt Germany 250 − 5 320 60 2840 850 1.8 1.9 
Amsterdam Netherlands 255 − 2.5 265 70 2840 855 1.8 2.0 
Copenhagen Denmark 255 0 320 110 1554 490 1.9 2.1 
(…)          
London City UK 335 10 – 185 652 35 2.6 2.8 
Leipzig Germany 335 15 – 890 148 3 2.4 3.0 
(…)          
Vilhelmina Sweden 528 − 30 760 1503 10 8 2.9 4.2 
(…)          
Båtsfjord Norway 1460 − 5 244 130 20 20 4.5 4.8 

Note: Column 3 depicts average quickest path as of period July 15th - 19th, 2019 as reference. Columns 4–5 map 2020′- airport susceptibility based on weekly 
snapshots: (1) March 9th − 13th, (2) April 20th - 24th, (3) July 13th - 17th. The remaining columns depict airport strength and average shortest path statistics based on 
July 15th - 19th, 2019 and July 13th - 17th, 2020. 
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because many businesses in manufacturing (e.g., after-market services) 
or the service industry (e.g., finance, engineering) rely on the avail-
ability of timely, long-distance transportation. For example, in 2019, the 
share of business-related, international air travel from Norway 
accounted for approximately 30 percent of the total air travel (Avinor, 
2020). Depending on the definition of the term ‘supply chain’ and 
whether the reader finds it appropriate to include the end-customer in 
the definition, a significant share of this business-related travel can be 
directly attributed to supply chain activities. Passenger air transport 
services can thus be considered highly important for value creation 
across industries. This is suggested by the number of domestic and 
interregional air trips in 2019 – more than 500 million in the EU member 
states (Eurostat, 2020) – and a conservative assumption (that is sub-
stantially lower than Norway’s) of the share of these trips related to 
business activities. The airport susceptibility values reported in this 
paper are therefore reflective of the challenges the pandemic has posed 
for the coordination of supply chain activities in such industries. 

The present analysis of the long-term network evolution prior to the 
pandemic complements earlier research (e.g., Cardillo, Zanin, et al. 
(2013)) on the existence of structural differences between the FSC and 
LCC layers and thus provides evidence that diverse underlying principles 
promote evolution in both layers. Structural changes in the aggregated 
EATN between 2004 and 2019 are predominantly attributable to 
development in the LCC layer. By contrast, an increase in network 
connectivity, as measured by a change in the average quickest path 
length, appears to be predominately linked to stronger temporal coor-
dination in the FSC layer. The temporal coordination of flights is not 
particularly pronounced in the LCC layer. Commercial entities depen-
dent on the timely accessibility of a large set of inner-European desti-
nations could consider this distinction when making locational decisions 
and in turn give more weight to locations that provide access to the FSC 
layer rather than the LCC layer. 

The evolution of the EATN after the COVID-19 outbreak in Europe is 
a process that has occurred in distinct stages. Despite prior knowledge of 
the emergence of COVID-19 in Europe and other parts of the world, 
initial network size adjustments seemed abrupt rather than governed by 
a gradual downscaling of operations. The major network shrinkage 
event coincided with national lockdowns in several European countries 
and the transition from the 2019 winter schedule to the 2020 summer 
season. The more-than-proportional network adjustments in the LCC 
layer during this and the second shrinkage stages may partially reflect 
the lower temporal dependencies of operations and higher flexibility 
with respect to abundant routes. For businesses located at sites with 
access to predominantly LCC-based services, this finding signals a higher 
probability to lose network connectivity during shrinkage events. 

The findings further suggest that during the partial recovery process, 
airlines in both layers re-established networks of considerably smaller 
size but that these networks largely resemble the normal hierarchical 
structures. This indicates the tendency to scale up operations along 
known paths rather than apply a radical reorganization of the networks 
in response to the pandemic. However, results hint that network pruning 
also leads to a more heterogeneous spatial concentration of traffic in the 
network. This relates to airlines over-proportionally focusing their op-
erations on their home markets during a crisis. City pairs within fixed 
geographical areas are relatively unlikely to be abandoned during 
network shrinkage events compared with links that reach outside these 
core areas. Detailed analyses of the airport community structure during 
2020 and 2021 reveal that the clustering shown in Fig. 1 has remained 
relatively unchanged during the pandemic. This relates to the domi-
nance of individual FSC-airlines in the specific clusters, which drive the 
network density within the clusters upwards, while the operations of 
LCC-airlines are less attributable to individual clusters. This inherent 
stability in community structure suggests that intra-cluster air travel 
remains relatively less affected during network shrinkage events. 

In the context of supply chain vulnerability, this finding suggests that 

supply chains distributed across multiple geographical areas are more 
prone to suffering negative implications than those concentrated within 
one region. Therefore, the geographical demarcations derived in this 
paper might be considered during supply chain design processes to 
reduce the risk of supply chain disintegration due to large-scale dis-
ruptions in air transport systems. 

The existence of substitutional frequencies combined with airlines’ 
tendency to primarily abandon non-hub city-pairs in periods of minor- 
to-modest network shrinkage limits the size of average airport suscep-
tibility during such phases and hence the disutility occurring to the 
average traveller. Once shrinkage reaches critical levels, though, the 
network-wide connectivity disintegrates dramatically. Variations in 
network size in different geographical parts of the EATN and at different 
points in time, therefore, lead to substantial spatial differences in airport 
susceptibility across Europe, which are hardly predictable based on 
geographical location alone. However, the extent to which an airport’s 
network-wide connectivity declines due to network shrinkage is found 
to correlate with nodal characteristics. Topologically weaker integrated 
and peripherally located airports are more susceptible to network 
shrinkage than airports that are strongly and centrally embedded in the 
network; this is because the rerouting flexibility of the former class of 
airports is generally lower, and a decline of temporal network coordi-
nation is more significant with every transfer necessary. Since nodal 
characteristics during the COVID-19 pandemic period have been found 
to correlate with nodal properties prior to network shrinkage, strength, 
and the average shortest path length of an airport in the undisturbed 
network stages can be used as indicators for the assessment of supply 
chain vulnerability. That is, supply chains that are highly dependent on 
human mobility and the movement of goods by air should concentrate 
their activities close to high-frequency and centrally-located airports. 
On a regional level, the impact of centrality suggests that, all else being 
equal, business activities located in more central airport clusters are less 
prone to network disruptions than businesses in more remotely located 
clusters. The results presented in this paper support this claim as we find 
comparably modest susceptibility values for inter-community travel 
starting from the Italian and the C-European airport communities. 

Concerning the limitations of this study, future work might benefit 
from implementing connectivity measures that can map a broader set of 
factors that impact customer disutility due to pandemic-induced 
network alterations. For example, as the quickest-path-based method 
applied here does not pick up the value of all lost frequencies which do 
not directly contribute to the quickest path, this paper might have 
underestimated airport susceptibility from the traveller’s and shipper’s 
perspectives. Future work could include airfare changes and the signif-
icance of frequency reduction in the context of a scheduled delay. 
Moreover, a valuable future contribution could address network alter-
ations in the corresponding designated air cargo network, thereby 
complementing the passenger and belly-cargo centric perspective 
applied in this paper. Furthermore, empirical research on the extent to 
which organizations have altered their strategies and business re-
lationships to increase resilience in the post-pandemic era could yield 
interesting insights on the importance of European air transport services 
for the organization of value chains. Finally, as this paper has only 
covered network evolution only until June 2021, a further natural step 
would be to investigate whether permanent changes in network struc-
ture and connectivity patterns persist after the pandemic is over. 
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Annex 1.  

Table A1 
Network metrics and concepts applied  

Measure/concept Notation Description 

Airport degree ki =
∑

jaij  The number of airports an airport i is connected to by direct flight. Then, 〈k〉 =
1
N
∑

i
ki gives the average 

degree in the network.  
Airport strength si =

∑
jwij  The number of flights operated at airport i. Then, 〈s〉 =

1
N
∑

i
si denotes the average airport strength in the 

network.  
Average link weight 〈w〉 =

∑
wij/

∑
aij  The average number of flights per city-pair. 

Clustering coefficient Ci =
2ai

ki(ki − 1)
The ratio of the number of links ai between the neighbors of i and the number of triplets centered on the 

airport. Averaged over the network, 〈C〉 =
1
N
∑

i
Ci measures the average fraction of an airport’s destination 

airports that are also connected by direct flight.  
Density 

D =

∑
iaij

N(N − 1)
The proportion of existing links between airports and the total number of potential links. 

Average Shortest Path Length L =
1

N(N − 1)
∑

dij  
The average number of flights along all shortest paths dij between two airports in the network.  

Normalization of network 
metric (z-score) zL =

L − 〈Lrandom〉
σLrandom  

The normalization of network metrics to facilitate comparison over time exemplified for L (Zanin et al., 2018). 
The z-score zL is the number of standard deviations σLrandom that the mean shortest path length 〈Lrandom〉, derived 
for 1000 random network realizations, deviates from the empirical metric.  

Modularity Q =
1

2m
∑

ij
(wij − Pij)δ(ci,cj)

The modularity of a weighted network, where m is the total number of flights in the network, Pij denotes the ij 
th element of the null-model matrix, ci represents the community that contains node i, and the Kronecker delta 
δ is 1 if ci = cj and 0 if ci ∕= cj (Newman et al., 2004). The value of Q is maximized to derive the community 
structure of a network.  

Null-model matrix PNG
ij =

sisj

2m  
The non-spatial null model applied for modularity maximization, with si being the strength of an airport i and 
m denoting the total number of network flights (Newman & Girvan, 2004).  

Inclusion value for community 
matching I(G1,G2) =

|G1 ∩ G2|

|G1|
* 

∑
i∈(G1∩G2)

sG1(i)
∑

i∈(G1 )
sG1(i)

The agreement of airports co-occurrence in communities G1 in period n and G2 in period n+1, considering the 
strength of the involved airports (Bródka et al., 2013).   

Annex 2.  

Table A2 
Derived airport communities-characteristics April 2019  

Community Network metrics* Intra-community flows Inter-community flows  

|NC| 〈k〉  〈s〉  ‘top 3’-airlines ‘top 3’ (in %) ‘LCC’ (in %) ‘top 3’-airlines ‘top 3’ (in %) ‘LCC’ (in %) 
British 64 (+12) 44 (+42) 583 (− 3) FlyBE 

British A. easyJet 
56 52 EasyJet 

British A. 
KLM 

46 45 

C-Europ. 78 (+4) 57 (+58) 670 (+20) Lufthansa 
Eurowings 
Austrian 

60 27 Lufthansa 
Ryanair 
Wizzair 

34 39 

E-Europ. 61 (+24) 21 (+62) 292 (+170) Aeroflot 
JSC Siberia 
Utair 

64 8 Aeroflot 
Lufthansa 
JSC Siberia 

61 11 

French 36 (− 14) 33 (+77) 377 (+10) Air France 
HOP! easyJet 

78 20 easyjet 
Ryanair 
Vueling 

37 57 

Greek 37 (+6) 22 (+67) 175 (+10) Olympic 
Sky Express 
Astra 

88 7 Ryanair 
Aegean easyJet 

51 49 

Iber. 45 (+10) 44 (+79) 577 (+34) Vueling 
Iberia 
Binter C. 

52 33 Ryanair 
Vueling 
TAP 

41 56 

Italian 47 (− 20) 69 (+170) 630 (+50) Ryanair 
Alitalia easyJet 

82 59 Ryanair easyJet 
Lufthansa 

49 63 

Nordic 105 (− 12) 20 (+54) 315 (+33) SAS 
Wideroe 
Norwegian 

70 19 SAS 
Norwegian 
Finnair 

36 40 

Turk. 50 (+79) 22 (+73) 327 (+170) Turkish Airl. 
Pegasus 
SunExpress 

96 31 Turkish Airl. 
Pegasus 
SunExpress 

54 28 

Note: * Values in parentheses indicate percentage change compared to 2004 value. Information provided in Columns 5–10 are separated for flows within and flows to/ 
from a community. ‘Top 3’ airlines based on market share in number of flights. Columns 6, 7 and 9, 10 provide accumulated market shares of ‘Top 3’ airlines and 
airlines classified as LCC.  
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Fig. A2. Number of weekly flights (*104) between communities - a) EATN, b) LCC layer, c) FSC layer. 
Note: Weekly flows between any two communities based on network snapshots of the first week of April 2019. Colour-coding corresponds with Fig. 1. Intra- 
community flows mapped as arcs with source and endpoint in the same community. 

Annex 3.

Fig. A3. Comparison of changes in distributions EATN (a), LCC-layer (b) and FSC-layer (c). 
Note: Panels depict distributions of link weights (w), airport degree (k), and airport strength (s) based on April 2004 and 2019 for the EATN. Distributions for random 
network realizations with size statistics equal to empirical networks of April 2019 but with unpreserved degree sequence (Bernoulli-type) as a reference in grey. The 
properties of the depicted distributions reflect diverting forms of network organizations, and one sees that the LCC layer has evolved most dynamically. In 2004, the 
LCC-network structure was more homogenous in terms of degree and strength distribution than the FSC-layer, indicating a lower dependency on hub-operations in 
the former. The ‘right shift’ of the distributions for airports in the higher spectrum in 2019 suggests that the LCC network has become more heterogeneous in terms of 
node properties and that some airports approach connectivity stages like the hub airports in the FSC layer. Comparing the layer distributions with Panel a) yields that 
high connectivity airports in both layers are typically not identical, suggesting, e.g., that the presence of LCC-airlines at classical hub-airports in 2019 is still rather 
low, and hence their choice of routes is different from those of FSC-airlines. These routes are further found to show a more heterogeneous pattern in terms of 
link weights. 
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Annex 4.

Fig. A4. Comparison number of direct city pairs and flights 2020 (2021) vs. 2019-community pair perspective. 
Note: Panels show the percentage change in the number of links (Columns 1 and 2) and number of flights (Columns 3 and 4) between each pair of airport com-
munities (i.e. Δa/a= (

∑
at

GiGj
−
∑

a2019
GiGj

)/
∑

a2019
GiGj

) for selected network snapshot in 2019 vs. 2020/21. 2019 dates are adjusted to reflect the corresponding day of the 
week 2020. Grey cells indicate observations with missing data. 
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Annex 5.  

Table A5.1 
Descriptive statistics panel data  

Variable Network 

EATN LCC-layer FSC-Layer 

Susceptibility 
Mean 423 486 522 
SD. 481 535 514 
Nodal strength 
Mean 73 46 51 
SD 148 78 10 
Av. Shortest path length 
Mean 3.1 2.7 3.3 
SD 0.59 0.49 0.59 
Sum flights in network 
Mean 39 000 15 035 24 545 
SD 17 300 7244 8957   

Table A5.2 
Estimation results panel regression susceptibility   

Dependent variable: 

Airport Susceptibility (log) 

EATN LCC layer FSC layer 

Airport strength (log) − 0.19*** − 0.19*** − 0.20*** 
(0.022) (0.013) (0.002) 

Average shortest path length (log) 1.93*** 2.47*** 2.15*** 
(0.165) (0.091) (0.173) 

Number of flights in network (log) − 0.78*** (0.027) − 0.51*** (0.015) − 0.89*** (0.031) 
Observations 17399 9567 15672 
Adjusted R2 0.64 0.57 0.58 
F Statistic 10299*** 9221*** 7508*** 

Note: ***p < 0.001; robust SE in parentheses. 
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Meilă, M. (2007). Comparing clusterings—an information based distance. Journal of 
Multivariate Analysis, 98(5), 873–895. https://doi.org/10.1016/j.jmva.2006.11.013. 
http://www.sciencedirect.com/science/article/pii/S0047259X06002016 

Meza, W., Olivia, C. T., Grady, D., Lee, J., Seebens, H., Blasius, B., & Brockmann, D. 
(2011). Complexity in human transportation networks: A comparative analysis of 
worldwide air transportation and global cargo-ship movements. The European 
Physical Journal B - Condensed Matter and Complex Systems, 84, 589–600. https://doi. 
org/10.1140/epjb/e2011-20208-9 

Meza, W., Olivia, D. G., Thiemann, C., Bagrow, J. P., & Brockmann, D. (2013). 
Eyjafjallajökull and 9/11: The impact of large-scale disasters on worldwide mobility. 
PloS One, 8(8). https://doi.org/10.1371/journal.pone.0069829 

Mueller, F., & Aravazhi, A. (2020). A new generalized travel cost based connectivity 
metric applied to Scandinavian airports. In Transportation research Part D: Transport 
and environment (Vol. 81, p. 102280). https://doi.org/10.1016/j.trd.2020.102280. 
http://www.sciencedirect.com/science/article/pii/S1361920919314749 

Newman, M. (2004). Analysis of weighted networks. Physical Review. E, Statistical, 
Nonlinear, and Soft Matter Physics (Vol. 70), Article 056131. https://doi.org/ 
10.1103/PhysRevE.70.056131 

Newman, M., & Girvan, M. (2004). Finding and evaluating community structure in 
networks. Physical review. E, Statistical, nonlinear, and soft matter physics, 69, Article 
026113. https://doi.org/10.1103/PhysRevE.69.026113 

Paleari, S., Redondi, R., & Malighetti, P. (2010). A comparative study of airport 
connectivity in China, Europe and US: Which network provides the best service to 
passengers? Transportation Research Part E: Logistics and Transportation Review, 46(2), 
198–210. http://www.sciencedirect.com/science/article/pii/S1366554509001094. 

Papatheodorou, A., & Arvanitis, P. (2009). Spatial evolution of airport traffic and air 
transport liberalisation: The case of Greece. Journal of Transport Geography, 17(5), 
402–412. https://doi.org/10.1016/j.jtrangeo.2008.08.004. http://www.sciencedi 
rect.com/science/article/pii/S0966692308000872 
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