Vis enkel innførsel

dc.contributor.authorVásárhelyi, Gábor
dc.contributor.authorVirágh, Csaba
dc.contributor.authorSomorjai, Gergő
dc.contributor.authorNepusz, Tamás
dc.contributor.authorEiben, Agoston E.
dc.contributor.authorVicsek, Tamás
dc.date.accessioned2023-09-28T11:44:34Z
dc.date.available2023-09-28T11:44:34Z
dc.date.created2019-02-20T13:53:44Z
dc.date.issued2018
dc.identifier.citationScience robotics. 2018, 3 (20), 1-13.en_US
dc.identifier.issn2470-9476
dc.identifier.urihttps://hdl.handle.net/11250/3092721
dc.description.abstractWe address a fundamental issue of collective motion of aerial robots: how to ensure that large flocks of autonomous drones seamlessly navigate in confined spaces. The numerous existing flocking models are rarely tested on actual hardware because they typically neglect some crucial aspects of multirobot systems. Constrained motion and communication capabilities, delays, perturbations, or the presence of barriers should be modeled and treated explicitly because they have large effects on collective behavior during the cooperation of real agents. Handling these issues properly results in additional model complexity and a natural increase in the number of tunable parameters, which calls for appropriate optimization methods to be coupled tightly to model development. In this paper, we propose such a flocking model for real drones incorporating an evolutionary optimization framework with carefully chosen order parameters and fitness functions. We numerically demonstrated that the induced swarm behavior remained stable under realistic conditions for large flock sizes and notably for large velocities. We showed that coherent and realistic collective motion patterns persisted even around perturbing obstacles. Furthermore, we validated our model on real hardware, carrying out field experiments with a self-organized swarm of 30 drones. This is the largest of such aerial outdoor systems without central control reported to date exhibiting flocking with collective collision and object avoidance. The results confirmed the adequacy of our approach. Successfully controlling dozens of quadcopters will enable substantially more efficient task management in various contexts involving drones.en_US
dc.language.isoengen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleOptimized flocking of autonomous drones in confined environmentsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1-13en_US
dc.source.volume3en_US
dc.source.journalScience roboticsen_US
dc.source.issue20en_US
dc.identifier.doi10.1126/scirobotics.aat3536
dc.identifier.cristin1679209
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal